基于人工神经网络的实时调度决策算法

Shiladitya Chakravorty, N. Nagarur
{"title":"基于人工神经网络的实时调度决策算法","authors":"Shiladitya Chakravorty, N. Nagarur","doi":"10.1109/ASMC49169.2020.9185213","DOIUrl":null,"url":null,"abstract":"In semiconductor manufacturing fabs, presence of queue time restricted zones within manufacturing routes present some unique challenges for fab dispatching and scheduling systems. In this study we discuss some of these challenges and present a cycle time prediction methodology based on backpropagation trained artificial neural network which can be used for making real time dispatching decisions at trigger steps of queue time restricted zones.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"18 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Artificial Neural Network Based Algorithm For Real Time Dispatching Decisions\",\"authors\":\"Shiladitya Chakravorty, N. Nagarur\",\"doi\":\"10.1109/ASMC49169.2020.9185213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In semiconductor manufacturing fabs, presence of queue time restricted zones within manufacturing routes present some unique challenges for fab dispatching and scheduling systems. In this study we discuss some of these challenges and present a cycle time prediction methodology based on backpropagation trained artificial neural network which can be used for making real time dispatching decisions at trigger steps of queue time restricted zones.\",\"PeriodicalId\":6771,\"journal\":{\"name\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"18 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC49169.2020.9185213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在半导体制造晶圆厂中,在制造路线中存在排队时间限制区域,这给晶圆厂调度和调度系统带来了一些独特的挑战。在本研究中,我们讨论了其中的一些挑战,并提出了一种基于反向传播训练的人工神经网络的周期时间预测方法,该方法可用于在队列时间限制区域的触发步骤进行实时调度决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Artificial Neural Network Based Algorithm For Real Time Dispatching Decisions
In semiconductor manufacturing fabs, presence of queue time restricted zones within manufacturing routes present some unique challenges for fab dispatching and scheduling systems. In this study we discuss some of these challenges and present a cycle time prediction methodology based on backpropagation trained artificial neural network which can be used for making real time dispatching decisions at trigger steps of queue time restricted zones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信