Heba Khdr, T. Ebi, M. Shafique, H. Amrouch, J. Henkel
{"title":"片上系统的多目标动态热管理","authors":"Heba Khdr, T. Ebi, M. Shafique, H. Amrouch, J. Henkel","doi":"10.7873/DATE.2014.343","DOIUrl":null,"url":null,"abstract":"Thermal hot spots and unbalanced temperatures between cores on chip can cause either degradation in performance or may have a severe impact on reliability, or both. In this paper, we propose mDTM, a proactive dynamic thermal management technique for on-chip systems. It employs multi-objective management for migrating tasks in order to both prevent the system from hitting an undesirable thermal threshold and to balance the temperatures between the cores. Our evaluation on the Intel SCC platform shows that mDTM can successfully avoid a given thermal threshold and reduce spatial thermal variation by 22%. Compared to state-of-the-art, our mDTM achieves up to 58% performance gain. Additionally, we deploy an FPGA and IR camera based setup to analyze the effectiveness of our technique.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"203 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"mDTM: Multi-objective dynamic thermal management for on-chip systems\",\"authors\":\"Heba Khdr, T. Ebi, M. Shafique, H. Amrouch, J. Henkel\",\"doi\":\"10.7873/DATE.2014.343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal hot spots and unbalanced temperatures between cores on chip can cause either degradation in performance or may have a severe impact on reliability, or both. In this paper, we propose mDTM, a proactive dynamic thermal management technique for on-chip systems. It employs multi-objective management for migrating tasks in order to both prevent the system from hitting an undesirable thermal threshold and to balance the temperatures between the cores. Our evaluation on the Intel SCC platform shows that mDTM can successfully avoid a given thermal threshold and reduce spatial thermal variation by 22%. Compared to state-of-the-art, our mDTM achieves up to 58% performance gain. Additionally, we deploy an FPGA and IR camera based setup to analyze the effectiveness of our technique.\",\"PeriodicalId\":6550,\"journal\":{\"name\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"203 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2014.343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
mDTM: Multi-objective dynamic thermal management for on-chip systems
Thermal hot spots and unbalanced temperatures between cores on chip can cause either degradation in performance or may have a severe impact on reliability, or both. In this paper, we propose mDTM, a proactive dynamic thermal management technique for on-chip systems. It employs multi-objective management for migrating tasks in order to both prevent the system from hitting an undesirable thermal threshold and to balance the temperatures between the cores. Our evaluation on the Intel SCC platform shows that mDTM can successfully avoid a given thermal threshold and reduce spatial thermal variation by 22%. Compared to state-of-the-art, our mDTM achieves up to 58% performance gain. Additionally, we deploy an FPGA and IR camera based setup to analyze the effectiveness of our technique.