{"title":"微波烧结3D打印绿色体制备多孔可生物降解铁支架的实验研究","authors":"D. Mishra, P. M. Pandey","doi":"10.1115/msec2021-63402","DOIUrl":null,"url":null,"abstract":"\n Iron has appealing biodegradable properties that makes compatible for biodegradable implant tools applications. Although, the slow corrosion rate of Fe made obsolete for biomedical applications. The incorporation of the porous structure may result in an enhanced degradation rate. The main advantage offer by the porous structure is to allow to flow the body transportation fluid through it and ease to proliferate the new tissue. Therefore, the current work focused on the development of a porous Fe structures using micro-extrusion based three-dimensional printing (ME3DP) and pressure less microwave sintering. The metallic-based polymeric ink used to fabricate the intent design structure. Subsequently, samples were heated in the microwave sintering furnace. The experimentations were done to evaluate the outcomes of different Fe concentrations (91–95 wt.%) on density and compressive yield strength of developed porous parts. Experimental observation deduced that fabricated part ≥ 94.wt.% of Fe concentration has strong bonding strength between the printed layers. Moreover, the mechanical property of 94 wt.% has found greater than 95 wt.% of Fe concentration. The scanning electron microscopic (SEM) image illustrated the presence of porous morphology into the fabricated body. Additionally, XRD (X-ray diffraction) plots exhibited the purity of sample without any contamination residue.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Investigation Into the Fabrication of Porous Biodegradable Fe Scaffold by Microwave Sintering of 3D Printed Green Body\",\"authors\":\"D. Mishra, P. M. Pandey\",\"doi\":\"10.1115/msec2021-63402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Iron has appealing biodegradable properties that makes compatible for biodegradable implant tools applications. Although, the slow corrosion rate of Fe made obsolete for biomedical applications. The incorporation of the porous structure may result in an enhanced degradation rate. The main advantage offer by the porous structure is to allow to flow the body transportation fluid through it and ease to proliferate the new tissue. Therefore, the current work focused on the development of a porous Fe structures using micro-extrusion based three-dimensional printing (ME3DP) and pressure less microwave sintering. The metallic-based polymeric ink used to fabricate the intent design structure. Subsequently, samples were heated in the microwave sintering furnace. The experimentations were done to evaluate the outcomes of different Fe concentrations (91–95 wt.%) on density and compressive yield strength of developed porous parts. Experimental observation deduced that fabricated part ≥ 94.wt.% of Fe concentration has strong bonding strength between the printed layers. Moreover, the mechanical property of 94 wt.% has found greater than 95 wt.% of Fe concentration. The scanning electron microscopic (SEM) image illustrated the presence of porous morphology into the fabricated body. Additionally, XRD (X-ray diffraction) plots exhibited the purity of sample without any contamination residue.\",\"PeriodicalId\":56519,\"journal\":{\"name\":\"光:先进制造(英文)\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光:先进制造(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2021-63402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/msec2021-63402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Investigation Into the Fabrication of Porous Biodegradable Fe Scaffold by Microwave Sintering of 3D Printed Green Body
Iron has appealing biodegradable properties that makes compatible for biodegradable implant tools applications. Although, the slow corrosion rate of Fe made obsolete for biomedical applications. The incorporation of the porous structure may result in an enhanced degradation rate. The main advantage offer by the porous structure is to allow to flow the body transportation fluid through it and ease to proliferate the new tissue. Therefore, the current work focused on the development of a porous Fe structures using micro-extrusion based three-dimensional printing (ME3DP) and pressure less microwave sintering. The metallic-based polymeric ink used to fabricate the intent design structure. Subsequently, samples were heated in the microwave sintering furnace. The experimentations were done to evaluate the outcomes of different Fe concentrations (91–95 wt.%) on density and compressive yield strength of developed porous parts. Experimental observation deduced that fabricated part ≥ 94.wt.% of Fe concentration has strong bonding strength between the printed layers. Moreover, the mechanical property of 94 wt.% has found greater than 95 wt.% of Fe concentration. The scanning electron microscopic (SEM) image illustrated the presence of porous morphology into the fabricated body. Additionally, XRD (X-ray diffraction) plots exhibited the purity of sample without any contamination residue.