关于流动中渐近周期性运动

IF 0.1 Q4 MATHEMATICS
K. Gryszka
{"title":"关于流动中渐近周期性运动","authors":"K. Gryszka","doi":"10.2478/aupcsm-2018-0005","DOIUrl":null,"url":null,"abstract":"Abstract We study three properties associated to the recurrence of orbits in flows: asymptotic periodicity, positive asymptotic periodicity and G-asymptotic periodicity. We determine which implications between these notions hold and which do not. We also show how these notions are related to Lyapunov stability.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"5 1","pages":"45 - 57"},"PeriodicalIF":0.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On asymptotically periodic-like motions in flows\",\"authors\":\"K. Gryszka\",\"doi\":\"10.2478/aupcsm-2018-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study three properties associated to the recurrence of orbits in flows: asymptotic periodicity, positive asymptotic periodicity and G-asymptotic periodicity. We determine which implications between these notions hold and which do not. We also show how these notions are related to Lyapunov stability.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"5 1\",\"pages\":\"45 - 57\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/aupcsm-2018-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2018-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了流中轨道递推性的三个性质:渐近周期性、正渐近周期性和g渐近周期性。我们决定这些概念之间的哪些含义成立,哪些不成立。我们还说明了这些概念是如何与李亚普诺夫稳定性联系起来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On asymptotically periodic-like motions in flows
Abstract We study three properties associated to the recurrence of orbits in flows: asymptotic periodicity, positive asymptotic periodicity and G-asymptotic periodicity. We determine which implications between these notions hold and which do not. We also show how these notions are related to Lyapunov stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信