N. Abbas, W. Shatanawi, K. Rehman, Taqi A. M. Shatnawi
{"title":"速度和热滑移对垂直非线性拉伸Riga片上微极纳米流体边界层流动的影响","authors":"N. Abbas, W. Shatanawi, K. Rehman, Taqi A. M. Shatnawi","doi":"10.1177/23977914231156685","DOIUrl":null,"url":null,"abstract":"In the present analysis, heat and mass transfer of micropolar nanofluid flow over vertical nonlinear Riga stretching sheet is considered. Effects of velocity slip, thermal slip, Joule heating, thermal radiations, variable thermal conductivity, and heat generation are examined. Thermophoresis and Brownian motion effects are highlighted in current study. The mathematical model is developed under flow assumptions, the partial differential equations are formed by implementing the boundary layer approximations. The partial differential equations are further reduced in form of ordinary differential equations by means of suitable transformations. The ordinary differential equations are solved through numerical procedure. The effects physical parameters presented through tables and graphs for the both case of suction/injection. Velocity function declined due to higher values of micropolar parameter. The velocity function declined due to increasing the values of velocity slip. The concentration function declined due to larger values of Brownian motion. The positive values of velocity slip increases the Sherwood number and Nusselt number. The Nusselt number and Sherwood number declined for higher values of thermal slip [Formula: see text]. The values of Sherwood number and Nusselt number declined for higher values of Eckert number [Formula: see text].","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Velocity and thermal slips impact on boundary layer flow of micropolar nanofluid over a vertical nonlinear stretched Riga sheet\",\"authors\":\"N. Abbas, W. Shatanawi, K. Rehman, Taqi A. M. Shatnawi\",\"doi\":\"10.1177/23977914231156685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present analysis, heat and mass transfer of micropolar nanofluid flow over vertical nonlinear Riga stretching sheet is considered. Effects of velocity slip, thermal slip, Joule heating, thermal radiations, variable thermal conductivity, and heat generation are examined. Thermophoresis and Brownian motion effects are highlighted in current study. The mathematical model is developed under flow assumptions, the partial differential equations are formed by implementing the boundary layer approximations. The partial differential equations are further reduced in form of ordinary differential equations by means of suitable transformations. The ordinary differential equations are solved through numerical procedure. The effects physical parameters presented through tables and graphs for the both case of suction/injection. Velocity function declined due to higher values of micropolar parameter. The velocity function declined due to increasing the values of velocity slip. The concentration function declined due to larger values of Brownian motion. The positive values of velocity slip increases the Sherwood number and Nusselt number. The Nusselt number and Sherwood number declined for higher values of thermal slip [Formula: see text]. The values of Sherwood number and Nusselt number declined for higher values of Eckert number [Formula: see text].\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23977914231156685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914231156685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Velocity and thermal slips impact on boundary layer flow of micropolar nanofluid over a vertical nonlinear stretched Riga sheet
In the present analysis, heat and mass transfer of micropolar nanofluid flow over vertical nonlinear Riga stretching sheet is considered. Effects of velocity slip, thermal slip, Joule heating, thermal radiations, variable thermal conductivity, and heat generation are examined. Thermophoresis and Brownian motion effects are highlighted in current study. The mathematical model is developed under flow assumptions, the partial differential equations are formed by implementing the boundary layer approximations. The partial differential equations are further reduced in form of ordinary differential equations by means of suitable transformations. The ordinary differential equations are solved through numerical procedure. The effects physical parameters presented through tables and graphs for the both case of suction/injection. Velocity function declined due to higher values of micropolar parameter. The velocity function declined due to increasing the values of velocity slip. The concentration function declined due to larger values of Brownian motion. The positive values of velocity slip increases the Sherwood number and Nusselt number. The Nusselt number and Sherwood number declined for higher values of thermal slip [Formula: see text]. The values of Sherwood number and Nusselt number declined for higher values of Eckert number [Formula: see text].
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.