使用机器学习算法从心脏造影数据中自动检测胎儿健康状况

Md Tamjid Rayhana, Asm Shamsul Arefina, Sabbir Ahmed Chowdhury
{"title":"使用机器学习算法从心脏造影数据中自动检测胎儿健康状况","authors":"Md Tamjid Rayhana, Asm Shamsul Arefina, Sabbir Ahmed Chowdhury","doi":"10.3329/jbas.v45i2.57206","DOIUrl":null,"url":null,"abstract":"A method for the automatic determination of the fetus health status using Cardiotocography (CTG) and computer-based machine learning algorithms was developed. Five computation friendly machine learning algorithms were used to create multiclass classification models to predict the fetus health status from secondary CTG dataset containing normal, suspected and pathologic data available at University California Irvine Machine Learning Repository. Furthermore, a comparative analysis among the built models was executed. According to the comparative analysis, the best model to automatically detect fetal health was the extreme gradient boosting algorithm-based model with an accuracy of 96.7% and an F1-Score of 0.963 in the pathologic class. This finding thus has the potential to diagnose fetal heart conditions unsupervised, and more efficiently and effectively.\nJ. Bangladesh Acad. Sci. 45(2); 155-167: December 2021","PeriodicalId":15109,"journal":{"name":"Journal of Bangladesh Academy of Sciences","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic detection of fetal health status from cardiotocography data using machine learning algorithms\",\"authors\":\"Md Tamjid Rayhana, Asm Shamsul Arefina, Sabbir Ahmed Chowdhury\",\"doi\":\"10.3329/jbas.v45i2.57206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for the automatic determination of the fetus health status using Cardiotocography (CTG) and computer-based machine learning algorithms was developed. Five computation friendly machine learning algorithms were used to create multiclass classification models to predict the fetus health status from secondary CTG dataset containing normal, suspected and pathologic data available at University California Irvine Machine Learning Repository. Furthermore, a comparative analysis among the built models was executed. According to the comparative analysis, the best model to automatically detect fetal health was the extreme gradient boosting algorithm-based model with an accuracy of 96.7% and an F1-Score of 0.963 in the pathologic class. This finding thus has the potential to diagnose fetal heart conditions unsupervised, and more efficiently and effectively.\\nJ. Bangladesh Acad. Sci. 45(2); 155-167: December 2021\",\"PeriodicalId\":15109,\"journal\":{\"name\":\"Journal of Bangladesh Academy of Sciences\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bangladesh Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jbas.v45i2.57206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bangladesh Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jbas.v45i2.57206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用心脏造影(CTG)和基于计算机的机器学习算法自动测定胎儿健康状况的方法。使用五种计算友好的机器学习算法建立多类分类模型,从加利福尼亚大学欧文机器学习库提供的含有正常、疑似和病理数据的二级CTG数据集中预测胎儿健康状况。并对所建模型进行了对比分析。通过对比分析,基于极端梯度增强算法的模型是自动检测胎儿健康的最佳模型,准确率为96.7%,病理类F1-Score为0.963。因此,这一发现有可能在无人监督的情况下更有效地诊断胎儿心脏状况。科学通报,2011 (2);155-167: 2021年12月
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic detection of fetal health status from cardiotocography data using machine learning algorithms
A method for the automatic determination of the fetus health status using Cardiotocography (CTG) and computer-based machine learning algorithms was developed. Five computation friendly machine learning algorithms were used to create multiclass classification models to predict the fetus health status from secondary CTG dataset containing normal, suspected and pathologic data available at University California Irvine Machine Learning Repository. Furthermore, a comparative analysis among the built models was executed. According to the comparative analysis, the best model to automatically detect fetal health was the extreme gradient boosting algorithm-based model with an accuracy of 96.7% and an F1-Score of 0.963 in the pathologic class. This finding thus has the potential to diagnose fetal heart conditions unsupervised, and more efficiently and effectively. J. Bangladesh Acad. Sci. 45(2); 155-167: December 2021
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信