Fisher-KPP方程全解的一维对称性结果

C. Sourdis
{"title":"Fisher-KPP方程全解的一维对称性结果","authors":"C. Sourdis","doi":"10.1090/proc/15415","DOIUrl":null,"url":null,"abstract":"We consider the Fisher-KPP reaction-diffusion equation in the whole space. \nWe prove that if a solution has, to main order and for all times (positive and negative), the same exponential decay as a planar traveling wave with speed larger than the minimal one at its leading edge, then it has to coincide with the aforementioned traveling wave.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A one-dimensional symmetry result for entire solutions to the Fisher-KPP equation\",\"authors\":\"C. Sourdis\",\"doi\":\"10.1090/proc/15415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Fisher-KPP reaction-diffusion equation in the whole space. \\nWe prove that if a solution has, to main order and for all times (positive and negative), the same exponential decay as a planar traveling wave with speed larger than the minimal one at its leading edge, then it has to coincide with the aforementioned traveling wave.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑整个空间中的Fisher-KPP反应扩散方程。我们证明,如果一个解在主阶和所有时间(正负)具有与平面行波相同的指数衰减,且速度大于其前缘的最小速度,则它必须与上述行波重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A one-dimensional symmetry result for entire solutions to the Fisher-KPP equation
We consider the Fisher-KPP reaction-diffusion equation in the whole space. We prove that if a solution has, to main order and for all times (positive and negative), the same exponential decay as a planar traveling wave with speed larger than the minimal one at its leading edge, then it has to coincide with the aforementioned traveling wave.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信