低延迟低计算关键字识别与说话人验证系统的事件驱动管道

Enea Ceolini, Jithendar Anumula, Stefan Braun, Shih-Chii Liu
{"title":"低延迟低计算关键字识别与说话人验证系统的事件驱动管道","authors":"Enea Ceolini, Jithendar Anumula, Stefan Braun, Shih-Chii Liu","doi":"10.1109/ICASSP.2019.8683669","DOIUrl":null,"url":null,"abstract":"This work presents an event-driven acoustic sensor processing pipeline to power a low-resource voice-activated smart assistant. The pipeline includes four major steps; namely localization, source separation, keyword spotting (KWS) and speaker verification (SV). The pipeline is driven by a front-end binaural spiking silicon cochlea sensor. The timing information carried by the output spikes of the cochlea provide spatial cues for localization and source separation. Spike features are generated with low latencies from the separated source spikes and are used by both KWS and SV which rely on state-of-the-art deep recurrent neural network architectures with a small memory footprint. Evaluation on a self-recorded event dataset based on TIDIGITS shows accuracies of over 93% and 88% on KWS and SV respectively, with minimum system latency of 5 ms on a limited resource device.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"7953-7957"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Event-driven Pipeline for Low-latency Low-compute Keyword Spotting and Speaker Verification System\",\"authors\":\"Enea Ceolini, Jithendar Anumula, Stefan Braun, Shih-Chii Liu\",\"doi\":\"10.1109/ICASSP.2019.8683669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an event-driven acoustic sensor processing pipeline to power a low-resource voice-activated smart assistant. The pipeline includes four major steps; namely localization, source separation, keyword spotting (KWS) and speaker verification (SV). The pipeline is driven by a front-end binaural spiking silicon cochlea sensor. The timing information carried by the output spikes of the cochlea provide spatial cues for localization and source separation. Spike features are generated with low latencies from the separated source spikes and are used by both KWS and SV which rely on state-of-the-art deep recurrent neural network architectures with a small memory footprint. Evaluation on a self-recorded event dataset based on TIDIGITS shows accuracies of over 93% and 88% on KWS and SV respectively, with minimum system latency of 5 ms on a limited resource device.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"7953-7957\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

这项工作提出了一个事件驱动的声学传感器处理管道,为低资源声控智能助手提供动力。该管道包括四个主要步骤;即定位、源分离、关键词识别(KWS)和说话人验证(SV)。该管道由前端双耳脉冲硅耳蜗传感器驱动。耳蜗输出峰携带的时间信息为定位和分离声源提供了空间线索。尖峰特征由分离源尖峰以低延迟生成,并由KWS和SV使用,它们依赖于具有小内存占用的最先进的深度循环神经网络架构。对基于TIDIGITS的自记录事件数据集的评估显示,在KWS和SV上的准确率分别超过93%和88%,在有限资源设备上的最小系统延迟为5 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-driven Pipeline for Low-latency Low-compute Keyword Spotting and Speaker Verification System
This work presents an event-driven acoustic sensor processing pipeline to power a low-resource voice-activated smart assistant. The pipeline includes four major steps; namely localization, source separation, keyword spotting (KWS) and speaker verification (SV). The pipeline is driven by a front-end binaural spiking silicon cochlea sensor. The timing information carried by the output spikes of the cochlea provide spatial cues for localization and source separation. Spike features are generated with low latencies from the separated source spikes and are used by both KWS and SV which rely on state-of-the-art deep recurrent neural network architectures with a small memory footprint. Evaluation on a self-recorded event dataset based on TIDIGITS shows accuracies of over 93% and 88% on KWS and SV respectively, with minimum system latency of 5 ms on a limited resource device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信