结合合作分类器投票的两种方法的比较

Q4 Computer Science
J. Franke, E. Mandler
{"title":"结合合作分类器投票的两种方法的比较","authors":"J. Franke, E. Mandler","doi":"10.1109/ICPR.1992.201786","DOIUrl":null,"url":null,"abstract":"Two different approaches are described to combine the results of different classifiers. The first approach is based on the Dempster/Shafer theory of evidence and the second one is a statistical approach with some assumptions on the input data. Both approaches were tested for user-dependent recognition of on-line handwritten characters.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"156 1","pages":"611-614"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"A comparison of two approaches for combining the votes of cooperating classifiers\",\"authors\":\"J. Franke, E. Mandler\",\"doi\":\"10.1109/ICPR.1992.201786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two different approaches are described to combine the results of different classifiers. The first approach is based on the Dempster/Shafer theory of evidence and the second one is a statistical approach with some assumptions on the input data. Both approaches were tested for user-dependent recognition of on-line handwritten characters.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"156 1\",\"pages\":\"611-614\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 77

摘要

描述了两种不同的方法来组合不同分类器的结果。第一种方法基于Dempster/Shafer证据理论,第二种方法是对输入数据进行一些假设的统计方法。对这两种方法进行了基于用户的在线手写字符识别测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of two approaches for combining the votes of cooperating classifiers
Two different approaches are described to combine the results of different classifiers. The first approach is based on the Dempster/Shafer theory of evidence and the second one is a statistical approach with some assumptions on the input data. Both approaches were tested for user-dependent recognition of on-line handwritten characters.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信