S. Albahrani, J. T. Alves, A. Duval, T. Chaise, Jean-Pierre de Vaujany, M. Guingand
{"title":"弹塑性、多尺度和多接触问题的建模:在蜗杆齿轮中的应用","authors":"S. Albahrani, J. T. Alves, A. Duval, T. Chaise, Jean-Pierre de Vaujany, M. Guingand","doi":"10.1051/meca/2022003","DOIUrl":null,"url":null,"abstract":"A nonconventional application of worm gears exploits the irreversibility of these power transmission devices in order to realize fast emergency braking. This application can be used to secure lifting devices. A limiting factor in the design of these instantaneous braking systems is the residual deformations of the worm/wheel contacting teeth, due to the impact between them at each emergency stop. The prediction of these residual displacements requires solving of an elastic–plastic, multi-scale and multi-contact problem. Original numerical tools were developed in this study to solve the problem at global and local scales. The method has been validated by comparing the obtained results with 3D measurements on new and deformed worm/wheel pairs. In order to predict the issue of the worm gear after an impact, a criterion based on kinematic errors is proposed. Applying this criterion gives the maximal admissible torque for the braking system to be operational after the impact.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"84 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modelling of elastoplastic, multi-scale and multi-contact problems: application to worm gears\",\"authors\":\"S. Albahrani, J. T. Alves, A. Duval, T. Chaise, Jean-Pierre de Vaujany, M. Guingand\",\"doi\":\"10.1051/meca/2022003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonconventional application of worm gears exploits the irreversibility of these power transmission devices in order to realize fast emergency braking. This application can be used to secure lifting devices. A limiting factor in the design of these instantaneous braking systems is the residual deformations of the worm/wheel contacting teeth, due to the impact between them at each emergency stop. The prediction of these residual displacements requires solving of an elastic–plastic, multi-scale and multi-contact problem. Original numerical tools were developed in this study to solve the problem at global and local scales. The method has been validated by comparing the obtained results with 3D measurements on new and deformed worm/wheel pairs. In order to predict the issue of the worm gear after an impact, a criterion based on kinematic errors is proposed. Applying this criterion gives the maximal admissible torque for the braking system to be operational after the impact.\",\"PeriodicalId\":49018,\"journal\":{\"name\":\"Mechanics & Industry\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1051/meca/2022003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2022003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Modelling of elastoplastic, multi-scale and multi-contact problems: application to worm gears
A nonconventional application of worm gears exploits the irreversibility of these power transmission devices in order to realize fast emergency braking. This application can be used to secure lifting devices. A limiting factor in the design of these instantaneous braking systems is the residual deformations of the worm/wheel contacting teeth, due to the impact between them at each emergency stop. The prediction of these residual displacements requires solving of an elastic–plastic, multi-scale and multi-contact problem. Original numerical tools were developed in this study to solve the problem at global and local scales. The method has been validated by comparing the obtained results with 3D measurements on new and deformed worm/wheel pairs. In order to predict the issue of the worm gear after an impact, a criterion based on kinematic errors is proposed. Applying this criterion gives the maximal admissible torque for the braking system to be operational after the impact.
期刊介绍:
An International Journal on Mechanical Sciences and Engineering Applications
With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities.
Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.