{"title":"机械运动大小的形式推导","authors":"V. Pavlov","doi":"10.17223/19988621/78/11","DOIUrl":null,"url":null,"abstract":"Quantum-mechanical differential equations are considered, which are formal analogues of the Schrödinger equation. Their differences from each other and from the Schrödinger equation lie in the orders of partial derivatives. A characteristic feature of these equations is the presence of dimensional coefficients, which are the product of integer powers of mass and velocity, which allows us to consider them as quantities of mechanical motion. The logical regularity of the formation of these values is established. The applied nature of two of them - the integral Umov vector for kinetic energy and backward momentum - is considered.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":"30 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Formal derivation of mechanical motion magnitudes\",\"authors\":\"V. Pavlov\",\"doi\":\"10.17223/19988621/78/11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum-mechanical differential equations are considered, which are formal analogues of the Schrödinger equation. Their differences from each other and from the Schrödinger equation lie in the orders of partial derivatives. A characteristic feature of these equations is the presence of dimensional coefficients, which are the product of integer powers of mass and velocity, which allows us to consider them as quantities of mechanical motion. The logical regularity of the formation of these values is established. The applied nature of two of them - the integral Umov vector for kinetic energy and backward momentum - is considered.\",\"PeriodicalId\":43729,\"journal\":{\"name\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/19988621/78/11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/78/11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Quantum-mechanical differential equations are considered, which are formal analogues of the Schrödinger equation. Their differences from each other and from the Schrödinger equation lie in the orders of partial derivatives. A characteristic feature of these equations is the presence of dimensional coefficients, which are the product of integer powers of mass and velocity, which allows us to consider them as quantities of mechanical motion. The logical regularity of the formation of these values is established. The applied nature of two of them - the integral Umov vector for kinetic energy and backward momentum - is considered.