具有散装物料流化的热交换器(设计审查)

Іgor Mikulionok, Аnton Karvatskii, O. Ivanenko, S. Leleka
{"title":"具有散装物料流化的热交换器(设计审查)","authors":"Іgor Mikulionok, Аnton Karvatskii, O. Ivanenko, S. Leleka","doi":"10.20535/2617-9741.3.2022.265359","DOIUrl":null,"url":null,"abstract":"A classification of heat exchangers with fluidization of bulk material for use in enterprises of the chemical, mining, construction, food, metallurgical and processing industries has been developed. A critical review of the most characteristic designs of heat exchangers with a fluidized bed, proposed by scientists, designers and inventors of the leading countries of the world, has been carried out. The designs of heat exchangers are analyzed depending on the method of fluidization, the role of bulk material in the heat exchange process, the nature of the heat exchange process over time, the nature of fluidization (in continuous heat exchangers), the mechanism of heat exchange of bulk material, the number of fluidized beds, the presence of additional heat exchange devices in the heat exchanger, the presence of movable structural elements, as well as the type of bulk material of the fluidized bed. \nAn analysis of the designs of heat exchangers with a fluidized bed indicates their considerable diversity, however, the most simple to manufacture and operate reliable devices with fixed structural elements and one fluidized bed remain in demand by the industry. The most promising direction for improving fluidized bed heat exchangers is the development of specialized (for processing bulk material or fluid coolant) designs of apparatuses. \nIn the future, it is planned to analyze the designs of other types of heat exchangers, as well as ways to improve their efficiency.","PeriodicalId":20682,"journal":{"name":"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat exchangers with fluidization of bulk material (Design review)\",\"authors\":\"Іgor Mikulionok, Аnton Karvatskii, O. Ivanenko, S. Leleka\",\"doi\":\"10.20535/2617-9741.3.2022.265359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classification of heat exchangers with fluidization of bulk material for use in enterprises of the chemical, mining, construction, food, metallurgical and processing industries has been developed. A critical review of the most characteristic designs of heat exchangers with a fluidized bed, proposed by scientists, designers and inventors of the leading countries of the world, has been carried out. The designs of heat exchangers are analyzed depending on the method of fluidization, the role of bulk material in the heat exchange process, the nature of the heat exchange process over time, the nature of fluidization (in continuous heat exchangers), the mechanism of heat exchange of bulk material, the number of fluidized beds, the presence of additional heat exchange devices in the heat exchanger, the presence of movable structural elements, as well as the type of bulk material of the fluidized bed. \\nAn analysis of the designs of heat exchangers with a fluidized bed indicates their considerable diversity, however, the most simple to manufacture and operate reliable devices with fixed structural elements and one fluidized bed remain in demand by the industry. The most promising direction for improving fluidized bed heat exchangers is the development of specialized (for processing bulk material or fluid coolant) designs of apparatuses. \\nIn the future, it is planned to analyze the designs of other types of heat exchangers, as well as ways to improve their efficiency.\",\"PeriodicalId\":20682,\"journal\":{\"name\":\"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/2617-9741.3.2022.265359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/2617-9741.3.2022.265359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发了用于化工、矿山、建筑、食品、冶金和加工等行业的散装物料流化换热器的分类。对由世界主要国家的科学家、设计师和发明家提出的最具特色的流化床热交换器设计进行了批判性审查。根据流态化的方法、散装物料在热交换过程中的作用、随时间变化的热交换过程的性质、流态化的性质(在连续热交换器中)、散装物料热交换的机理、流化床的数量、热交换器中是否存在额外的热交换装置、是否存在可移动的结构元件、以及流化床散装物料的类型。对流化床热交换器设计的分析表明,它们具有相当大的多样性,然而,具有固定结构元件和一个流化床的最简单制造和操作可靠的设备仍然是工业需求。改进流化床热交换器最有希望的方向是开发专门(用于处理散装物料或流体冷却剂)的设备设计。在未来,计划分析其他类型换热器的设计,以及提高其效率的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat exchangers with fluidization of bulk material (Design review)
A classification of heat exchangers with fluidization of bulk material for use in enterprises of the chemical, mining, construction, food, metallurgical and processing industries has been developed. A critical review of the most characteristic designs of heat exchangers with a fluidized bed, proposed by scientists, designers and inventors of the leading countries of the world, has been carried out. The designs of heat exchangers are analyzed depending on the method of fluidization, the role of bulk material in the heat exchange process, the nature of the heat exchange process over time, the nature of fluidization (in continuous heat exchangers), the mechanism of heat exchange of bulk material, the number of fluidized beds, the presence of additional heat exchange devices in the heat exchanger, the presence of movable structural elements, as well as the type of bulk material of the fluidized bed. An analysis of the designs of heat exchangers with a fluidized bed indicates their considerable diversity, however, the most simple to manufacture and operate reliable devices with fixed structural elements and one fluidized bed remain in demand by the industry. The most promising direction for improving fluidized bed heat exchangers is the development of specialized (for processing bulk material or fluid coolant) designs of apparatuses. In the future, it is planned to analyze the designs of other types of heat exchangers, as well as ways to improve their efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信