随机二次序列中的伽罗瓦群和素数

IF 0.6 3区 数学 Q3 MATHEMATICS
J. Doyle, Vivian Olsiewski Healey, W. Hindes, Rafe Jones
{"title":"随机二次序列中的伽罗瓦群和素数","authors":"J. Doyle, Vivian Olsiewski Healey, W. Hindes, Rafe Jones","doi":"10.1017/s0305004123000439","DOIUrl":null,"url":null,"abstract":"\n Given a set \n \n \n \n$S=\\{x^2+c_1,\\dots,x^2+c_s\\}$\n\n \n defined over a field and an infinite sequence \n \n \n \n$\\gamma$\n\n \n of elements of S, one can associate an arboreal representation to \n \n \n \n$\\gamma$\n\n \n , generalising the case of iterating a single polynomial. We study the probability that a random sequence \n \n \n \n$\\gamma$\n\n \n produces a “large-image” representation, meaning that infinitely many subquotients in the natural filtration are maximal. We prove that this probability is positive for most sets S defined over \n \n \n \n$\\mathbb{Z}[t]$\n\n \n , and we conjecture a similar positive-probability result for suitable sets over \n \n \n \n$\\mathbb{Q}$\n\n \n . As an application of large-image representations, we prove a density-zero result for the set of prime divisors of some associated quadratic sequences. We also consider the stronger condition of the representation being finite-index, and we classify all S possessing a particular kind of obstruction that generalises the post-critically finite case in single-polynomial iteration.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"71 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Galois groups and prime divisors in random quadratic sequences\",\"authors\":\"J. Doyle, Vivian Olsiewski Healey, W. Hindes, Rafe Jones\",\"doi\":\"10.1017/s0305004123000439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Given a set \\n \\n \\n \\n$S=\\\\{x^2+c_1,\\\\dots,x^2+c_s\\\\}$\\n\\n \\n defined over a field and an infinite sequence \\n \\n \\n \\n$\\\\gamma$\\n\\n \\n of elements of S, one can associate an arboreal representation to \\n \\n \\n \\n$\\\\gamma$\\n\\n \\n , generalising the case of iterating a single polynomial. We study the probability that a random sequence \\n \\n \\n \\n$\\\\gamma$\\n\\n \\n produces a “large-image” representation, meaning that infinitely many subquotients in the natural filtration are maximal. We prove that this probability is positive for most sets S defined over \\n \\n \\n \\n$\\\\mathbb{Z}[t]$\\n\\n \\n , and we conjecture a similar positive-probability result for suitable sets over \\n \\n \\n \\n$\\\\mathbb{Q}$\\n\\n \\n . As an application of large-image representations, we prove a density-zero result for the set of prime divisors of some associated quadratic sequences. We also consider the stronger condition of the representation being finite-index, and we classify all S possessing a particular kind of obstruction that generalises the post-critically finite case in single-polynomial iteration.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004123000439\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004123000439","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

给定一个域上定义的集合$S=\{x^2+c_1,\dots,x^2+c_s\}$和S元素的无限序列$\gamma$,可以将树表示与$\gamma$联系起来,推广迭代单个多项式的情况。我们研究了随机序列$\gamma$产生“大图像”表示的概率,这意味着在自然过滤中有无限多个子商是最大的。我们证明了这个概率对于$\mathbb{Z}[t]$上定义的大多数集合S是正的,并且我们推测了$\mathbb{Q}$上合适集合的一个类似的正概率结果。作为大图像表示的一个应用,我们证明了一些相关二次序列的质因数集的密度为零的结果。我们还考虑了表示是有限索引的更强条件,并对所有具有特定类型障碍的S进行了分类,推广了单多项式迭代中的后临界有限情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galois groups and prime divisors in random quadratic sequences
Given a set $S=\{x^2+c_1,\dots,x^2+c_s\}$ defined over a field and an infinite sequence $\gamma$ of elements of S, one can associate an arboreal representation to $\gamma$ , generalising the case of iterating a single polynomial. We study the probability that a random sequence $\gamma$ produces a “large-image” representation, meaning that infinitely many subquotients in the natural filtration are maximal. We prove that this probability is positive for most sets S defined over $\mathbb{Z}[t]$ , and we conjecture a similar positive-probability result for suitable sets over $\mathbb{Q}$ . As an application of large-image representations, we prove a density-zero result for the set of prime divisors of some associated quadratic sequences. We also consider the stronger condition of the representation being finite-index, and we classify all S possessing a particular kind of obstruction that generalises the post-critically finite case in single-polynomial iteration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信