{"title":"与(α,β)型熵相关的和式泛函方程的稳定性","authors":"D. Singh, Shveta Grover","doi":"10.22436/jnsa.014.03.06","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the stability of the sum form functional equation n ∑ i=1 m ∑ j=1 f(piqj) = n ∑ i=1 g(pi) m ∑ j=1 f(qj) + n ∑ i=1 f(pi) m ∑ j=1 q β j for all complete probability distributions (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm, n > 3, m > 3 are fixed integers, f, g are real valued mappings each having the domain I = [0, 1] and β is a fixed positive real power such that β 6= 1, 0β := 0, 1β := 1.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"4 1","pages":"168-180"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the stability of a sum form functional equation related to entropies of type (α,β)\",\"authors\":\"D. Singh, Shveta Grover\",\"doi\":\"10.22436/jnsa.014.03.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the stability of the sum form functional equation n ∑ i=1 m ∑ j=1 f(piqj) = n ∑ i=1 g(pi) m ∑ j=1 f(qj) + n ∑ i=1 f(pi) m ∑ j=1 q β j for all complete probability distributions (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm, n > 3, m > 3 are fixed integers, f, g are real valued mappings each having the domain I = [0, 1] and β is a fixed positive real power such that β 6= 1, 0β := 0, 1β := 1.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"4 1\",\"pages\":\"168-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jnsa.014.03.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.014.03.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the stability of a sum form functional equation related to entropies of type (α,β)
In this paper, we discuss the stability of the sum form functional equation n ∑ i=1 m ∑ j=1 f(piqj) = n ∑ i=1 g(pi) m ∑ j=1 f(qj) + n ∑ i=1 f(pi) m ∑ j=1 q β j for all complete probability distributions (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm, n > 3, m > 3 are fixed integers, f, g are real valued mappings each having the domain I = [0, 1] and β is a fixed positive real power such that β 6= 1, 0β := 0, 1β := 1.