基于改进仿生神经网络的水下航行器三维实时路径规划

J. Ni, Liuying Wu, Shihao Wang, Kang Wang
{"title":"基于改进仿生神经网络的水下航行器三维实时路径规划","authors":"J. Ni, Liuying Wu, Shihao Wang, Kang Wang","doi":"10.1109/ICCE-TW.2016.7520935","DOIUrl":null,"url":null,"abstract":"An improved algorithm based on bio-inspired neural network is proposed for Autonomous Underwater Vehicle (AUV) real-time path planning in three-dimensional (3D) environment in this paper. The algorithm has made an improvement in the shunting equation of the neural network model which is conductive to path planning especially in dynamic environments. The proposed approach has high efficiency and good real-time performance.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"23 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"3D real-time path planning for AUV based on improved bio-inspired neural network\",\"authors\":\"J. Ni, Liuying Wu, Shihao Wang, Kang Wang\",\"doi\":\"10.1109/ICCE-TW.2016.7520935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved algorithm based on bio-inspired neural network is proposed for Autonomous Underwater Vehicle (AUV) real-time path planning in three-dimensional (3D) environment in this paper. The algorithm has made an improvement in the shunting equation of the neural network model which is conductive to path planning especially in dynamic environments. The proposed approach has high efficiency and good real-time performance.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"23 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7520935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于仿生神经网络的自主水下航行器(AUV)三维环境实时路径规划改进算法。该算法对神经网络模型的分流方程进行了改进,有利于动态环境下的路径规划。该方法效率高,实时性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D real-time path planning for AUV based on improved bio-inspired neural network
An improved algorithm based on bio-inspired neural network is proposed for Autonomous Underwater Vehicle (AUV) real-time path planning in three-dimensional (3D) environment in this paper. The algorithm has made an improvement in the shunting equation of the neural network model which is conductive to path planning especially in dynamic environments. The proposed approach has high efficiency and good real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信