SPMNet:一个具有可分离金字塔模块的轻量级实时语义分割网络

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
S. Gao, Changzhu Zhang, Zhuping Wang, Hao Zhang, Chao Huang
{"title":"SPMNet:一个具有可分离金字塔模块的轻量级实时语义分割网络","authors":"S. Gao, Changzhu Zhang, Zhuping Wang, Hao Zhang, Chao Huang","doi":"10.1080/0952813X.2021.1908432","DOIUrl":null,"url":null,"abstract":"ABSTRACT Real-time semantic segmentation aims to generate high-quality prediction in limited time. Recently, with the development of many related potential applications, such as autonomous driving, robot sensing and augmented reality devices, semantic segmentation is desirable to make a trade-off between accuracy and inference speed with limited computation resources. This paper introduces a novel effective and light-weighted network based on Separable Pyramid Module (SPM) to achieve competitive accuracy and inference speed with fewer parameters and computation. Our proposed SPM unit utilises factorised convolution and dilated convolution in the form of a feature pyramid to build a bottleneck structure, which extracts local and context information in a simple but effective way. Experiments on Cityscapes and Camvid datasets demonstrate our superior trade-off between speed and precision. Without pre-training or any additional processing, our SPMNet achieves 71.22% mIoU on Cityscapes test set at the speed of 94 FPS on a single GTX 1080Ti GPU card.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"17 1","pages":"651 - 662"},"PeriodicalIF":1.7000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPMNet: A light-weighted network with separable pyramid module for real-time semantic segmentation\",\"authors\":\"S. Gao, Changzhu Zhang, Zhuping Wang, Hao Zhang, Chao Huang\",\"doi\":\"10.1080/0952813X.2021.1908432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Real-time semantic segmentation aims to generate high-quality prediction in limited time. Recently, with the development of many related potential applications, such as autonomous driving, robot sensing and augmented reality devices, semantic segmentation is desirable to make a trade-off between accuracy and inference speed with limited computation resources. This paper introduces a novel effective and light-weighted network based on Separable Pyramid Module (SPM) to achieve competitive accuracy and inference speed with fewer parameters and computation. Our proposed SPM unit utilises factorised convolution and dilated convolution in the form of a feature pyramid to build a bottleneck structure, which extracts local and context information in a simple but effective way. Experiments on Cityscapes and Camvid datasets demonstrate our superior trade-off between speed and precision. Without pre-training or any additional processing, our SPMNet achieves 71.22% mIoU on Cityscapes test set at the speed of 94 FPS on a single GTX 1080Ti GPU card.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"17 1\",\"pages\":\"651 - 662\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2021.1908432\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1908432","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

实时语义分割旨在在有限的时间内生成高质量的预测结果。近年来,随着自动驾驶、机器人传感和增强现实设备等相关潜在应用的发展,语义分割在计算资源有限的情况下,需要在精度和推理速度之间做出权衡。本文介绍了一种基于可分金字塔模块(SPM)的新型高效轻量级网络,以更少的参数和计算量实现了具有竞争力的精度和推理速度。我们提出的SPM单元以特征金字塔的形式利用分解卷积和展开卷积来构建瓶颈结构,以简单而有效的方式提取局部和上下文信息。在cityscape和Camvid数据集上的实验证明了我们在速度和精度之间的卓越权衡。无需预训练或任何额外的处理,我们的SPMNet在单个GTX 1080Ti GPU卡上以94 FPS的速度在cityscape测试集上实现了71.22%的mIoU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPMNet: A light-weighted network with separable pyramid module for real-time semantic segmentation
ABSTRACT Real-time semantic segmentation aims to generate high-quality prediction in limited time. Recently, with the development of many related potential applications, such as autonomous driving, robot sensing and augmented reality devices, semantic segmentation is desirable to make a trade-off between accuracy and inference speed with limited computation resources. This paper introduces a novel effective and light-weighted network based on Separable Pyramid Module (SPM) to achieve competitive accuracy and inference speed with fewer parameters and computation. Our proposed SPM unit utilises factorised convolution and dilated convolution in the form of a feature pyramid to build a bottleneck structure, which extracts local and context information in a simple but effective way. Experiments on Cityscapes and Camvid datasets demonstrate our superior trade-off between speed and precision. Without pre-training or any additional processing, our SPMNet achieves 71.22% mIoU on Cityscapes test set at the speed of 94 FPS on a single GTX 1080Ti GPU card.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
4.50%
发文量
89
审稿时长
>12 weeks
期刊介绍: Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research. The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following: • cognitive science • games • learning • knowledge representation • memory and neural system modelling • perception • problem-solving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信