齐次线性系统最优控制的数值误差界

IF 1.2 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Adnan Daraghmeh, N. Qatanani
{"title":"齐次线性系统最优控制的数值误差界","authors":"Adnan Daraghmeh, N. Qatanani","doi":"10.24425/acs.2019.129385","DOIUrl":null,"url":null,"abstract":"In this article we focus on the balanced truncation linear quadratic regulator (LQR) with constrained states and inputs. For closed-loop, we want to use the LQR to find an optimal control that minimizes the objective function which called “the quadratic cost function” with respect to the constraints on the states and the control input. In order to do that we have used formal asymptotes for the Pontryagin maximum principle (PMP) and we introduce an approach using the so called The Hamiltonian Function and the underlying algebraic Riccati equation. The theoretical results are validated numerically to show that the model order reduction based on open-loop balancing can also give good closed-loop performance.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"99 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical error bound of optimal control for homogeneous linear systems\",\"authors\":\"Adnan Daraghmeh, N. Qatanani\",\"doi\":\"10.24425/acs.2019.129385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we focus on the balanced truncation linear quadratic regulator (LQR) with constrained states and inputs. For closed-loop, we want to use the LQR to find an optimal control that minimizes the objective function which called “the quadratic cost function” with respect to the constraints on the states and the control input. In order to do that we have used formal asymptotes for the Pontryagin maximum principle (PMP) and we introduce an approach using the so called The Hamiltonian Function and the underlying algebraic Riccati equation. The theoretical results are validated numerically to show that the model order reduction based on open-loop balancing can also give good closed-loop performance.\",\"PeriodicalId\":48654,\"journal\":{\"name\":\"Archives of Control Sciences\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Control Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.24425/acs.2019.129385\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/acs.2019.129385","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究具有约束状态和约束输入的平衡截断线性二次型调节器(LQR)。对于闭环,我们希望使用LQR找到一个最优控制,使目标函数(称为“二次代价函数”)在状态和控制输入的约束下最小化。为了做到这一点,我们使用了庞特里亚金极大原理(PMP)的正式渐近线,并引入了一种使用所谓的哈密顿函数和基础代数里卡第方程的方法。数值验证了理论结果,表明基于开环平衡的模型降阶也能获得良好的闭环性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical error bound of optimal control for homogeneous linear systems
In this article we focus on the balanced truncation linear quadratic regulator (LQR) with constrained states and inputs. For closed-loop, we want to use the LQR to find an optimal control that minimizes the objective function which called “the quadratic cost function” with respect to the constraints on the states and the control input. In order to do that we have used formal asymptotes for the Pontryagin maximum principle (PMP) and we introduce an approach using the so called The Hamiltonian Function and the underlying algebraic Riccati equation. The theoretical results are validated numerically to show that the model order reduction based on open-loop balancing can also give good closed-loop performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Control Sciences
Archives of Control Sciences Mathematics-Modeling and Simulation
CiteScore
2.40
自引率
33.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信