一类广义系统的故障估计——一种自适应鲁棒扩展卡尔曼滤波方法

Liang Kexin, Li Tiantian
{"title":"一类广义系统的故障估计——一种自适应鲁棒扩展卡尔曼滤波方法","authors":"Liang Kexin, Li Tiantian","doi":"10.1109/ICMCCE51767.2020.00279","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive Robust Extended Klaman filter for a class of non-linear descriptor systems with unknown system noise. Firstly, a robust bound is given to decrease the influence of the linearization error on the estimation accuracy; an adaptive algorithm is introduced to implement an unbiased estimation of the noise, then; an numeral example is given to show the effectiveness of the method at last.","PeriodicalId":6712,"journal":{"name":"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","volume":"40 1","pages":"1274-1278"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Estimation for A Class of Descriptor Systems - An Adaptive Robust Extended Kalman Filter Approach\",\"authors\":\"Liang Kexin, Li Tiantian\",\"doi\":\"10.1109/ICMCCE51767.2020.00279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an adaptive Robust Extended Klaman filter for a class of non-linear descriptor systems with unknown system noise. Firstly, a robust bound is given to decrease the influence of the linearization error on the estimation accuracy; an adaptive algorithm is introduced to implement an unbiased estimation of the noise, then; an numeral example is given to show the effectiveness of the method at last.\",\"PeriodicalId\":6712,\"journal\":{\"name\":\"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"volume\":\"40 1\",\"pages\":\"1274-1278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMCCE51767.2020.00279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCCE51767.2020.00279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对一类系统噪声未知的非线性广义系统,提出了一种自适应鲁棒扩展Klaman滤波器。首先,给出了一个鲁棒界,以减小线性化误差对估计精度的影响;引入自适应算法实现对噪声的无偏估计;最后通过一个算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Estimation for A Class of Descriptor Systems - An Adaptive Robust Extended Kalman Filter Approach
This paper proposes an adaptive Robust Extended Klaman filter for a class of non-linear descriptor systems with unknown system noise. Firstly, a robust bound is given to decrease the influence of the linearization error on the estimation accuracy; an adaptive algorithm is introduced to implement an unbiased estimation of the noise, then; an numeral example is given to show the effectiveness of the method at last.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信