{"title":"阿尔及利亚东部地区太阳能接收器最佳角度的数值研究","authors":"Fethi Bennour, H. Mzad","doi":"10.1515/ehs-2021-0089","DOIUrl":null,"url":null,"abstract":"Abstract The need to capture the maximum amount of solar energy and to optimize the panels’ collecting surfaces are among the primary objectives of research in solar engineering. The simplest way to accomplish this is to perform a monthly accurate determination of the solar collector’s proper slope and azimuth angles. Indeed, this is the aim of this article, which consists of a graphical optimization based on the Gueymard’s daily integration model. A Matlab program was developed to predict the hourly solar radiation on a solar receiver using the Gueymard model in conjunction with the Liu and Jordan isotropic, Perez, and HDKR anisotropic models. A comprehensive simulation of the monthly solar irradiation throughout 2018 was executed for the city of Annaba, in north–eastern Algeria. The results indicate that the south-facing surface azimuth angle is the most appropriate. In fact, for maximum sunlight capture, the solar collector inclination must be adjusted each month in the range of [10–40°]. Furthermore, the results show that the gains in the amount of solar radiation received throughout the year by the thermal panel mounted at monthly optimum tilt angles are 15.63% in January and 7.37% in July.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"3 1","pages":"105 - 122"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A numerical investigation of optimum angles for solar energy receivers in the eastern part of Algeria\",\"authors\":\"Fethi Bennour, H. Mzad\",\"doi\":\"10.1515/ehs-2021-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The need to capture the maximum amount of solar energy and to optimize the panels’ collecting surfaces are among the primary objectives of research in solar engineering. The simplest way to accomplish this is to perform a monthly accurate determination of the solar collector’s proper slope and azimuth angles. Indeed, this is the aim of this article, which consists of a graphical optimization based on the Gueymard’s daily integration model. A Matlab program was developed to predict the hourly solar radiation on a solar receiver using the Gueymard model in conjunction with the Liu and Jordan isotropic, Perez, and HDKR anisotropic models. A comprehensive simulation of the monthly solar irradiation throughout 2018 was executed for the city of Annaba, in north–eastern Algeria. The results indicate that the south-facing surface azimuth angle is the most appropriate. In fact, for maximum sunlight capture, the solar collector inclination must be adjusted each month in the range of [10–40°]. Furthermore, the results show that the gains in the amount of solar radiation received throughout the year by the thermal panel mounted at monthly optimum tilt angles are 15.63% in January and 7.37% in July.\",\"PeriodicalId\":36885,\"journal\":{\"name\":\"Energy Harvesting and Systems\",\"volume\":\"3 1\",\"pages\":\"105 - 122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Harvesting and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ehs-2021-0089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Harvesting and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ehs-2021-0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
A numerical investigation of optimum angles for solar energy receivers in the eastern part of Algeria
Abstract The need to capture the maximum amount of solar energy and to optimize the panels’ collecting surfaces are among the primary objectives of research in solar engineering. The simplest way to accomplish this is to perform a monthly accurate determination of the solar collector’s proper slope and azimuth angles. Indeed, this is the aim of this article, which consists of a graphical optimization based on the Gueymard’s daily integration model. A Matlab program was developed to predict the hourly solar radiation on a solar receiver using the Gueymard model in conjunction with the Liu and Jordan isotropic, Perez, and HDKR anisotropic models. A comprehensive simulation of the monthly solar irradiation throughout 2018 was executed for the city of Annaba, in north–eastern Algeria. The results indicate that the south-facing surface azimuth angle is the most appropriate. In fact, for maximum sunlight capture, the solar collector inclination must be adjusted each month in the range of [10–40°]. Furthermore, the results show that the gains in the amount of solar radiation received throughout the year by the thermal panel mounted at monthly optimum tilt angles are 15.63% in January and 7.37% in July.