{"title":"García Guirao和Lampart提出的一类Belusov - Zhabotinskii反应模型的拓扑熵、分布混沌和主测度","authors":"Hongqing Wang, Risong Li","doi":"10.22052/IJMC.2021.240450.1541","DOIUrl":null,"url":null,"abstract":"In this paper, the chaotic properties of the following Belusov-Zhabotinskii's reaction model is explored: alk+1=(1-η)θ(alk)+(1/2) η[θ(al-1k)-θ(al+1k)], where k is discrete time index, l is lattice side index with system size M, η∊ [0, 1) is coupling constant and $theta$ is a continuous map on W=[-1, 1]. This kind of system is a generalization of the chemical reaction model which was presented by Garcia Guirao and Lampart in [Chaos of a coupled lattice system related with the Belusov–Zhabotinskii reaction, J. Math. Chem. 48 (2010) 159-164] and stated by Kaneko in [Globally coupled chaos violates the law of large numbers but not the central-limit theorem, Phys. Rev. Lett. 65 (1990) 1391-1394], and it is closely related to the Belusov-Zhabotinskii's reaction. In particular, it is shown that for any coupling constant η ∊ [0, 1/2), any r ∊ {1, 2, ...} and θ=Qr, the topological entropy of this system is greater than or equal to rlog(2-2η), and that this system is Li-Yorke chaotic and distributionally chaotic, where the map Q is defined by Q(a)=1-|1-2a|, a ∊ [0, 1], and Q(a)=-Q(-a), a ∊ [-1, 0]. Moreover, we also show that for any c, d with 0≤c≤ d≤ 1, η=0 and θ=Q, this system is distributionally (c, d)-chaotic.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":"299 1","pages":"57-65"},"PeriodicalIF":1.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Entropy, Distributional Chaos and the Principal Measure of a Class of Belusov−Zhabotinskii's Reaction Models Presented by García Guirao and Lampart\",\"authors\":\"Hongqing Wang, Risong Li\",\"doi\":\"10.22052/IJMC.2021.240450.1541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the chaotic properties of the following Belusov-Zhabotinskii's reaction model is explored: alk+1=(1-η)θ(alk)+(1/2) η[θ(al-1k)-θ(al+1k)], where k is discrete time index, l is lattice side index with system size M, η∊ [0, 1) is coupling constant and $theta$ is a continuous map on W=[-1, 1]. This kind of system is a generalization of the chemical reaction model which was presented by Garcia Guirao and Lampart in [Chaos of a coupled lattice system related with the Belusov–Zhabotinskii reaction, J. Math. Chem. 48 (2010) 159-164] and stated by Kaneko in [Globally coupled chaos violates the law of large numbers but not the central-limit theorem, Phys. Rev. Lett. 65 (1990) 1391-1394], and it is closely related to the Belusov-Zhabotinskii's reaction. In particular, it is shown that for any coupling constant η ∊ [0, 1/2), any r ∊ {1, 2, ...} and θ=Qr, the topological entropy of this system is greater than or equal to rlog(2-2η), and that this system is Li-Yorke chaotic and distributionally chaotic, where the map Q is defined by Q(a)=1-|1-2a|, a ∊ [0, 1], and Q(a)=-Q(-a), a ∊ [-1, 0]. Moreover, we also show that for any c, d with 0≤c≤ d≤ 1, η=0 and θ=Q, this system is distributionally (c, d)-chaotic.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":\"299 1\",\"pages\":\"57-65\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2021.240450.1541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2021.240450.1541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Topological Entropy, Distributional Chaos and the Principal Measure of a Class of Belusov−Zhabotinskii's Reaction Models Presented by García Guirao and Lampart
In this paper, the chaotic properties of the following Belusov-Zhabotinskii's reaction model is explored: alk+1=(1-η)θ(alk)+(1/2) η[θ(al-1k)-θ(al+1k)], where k is discrete time index, l is lattice side index with system size M, η∊ [0, 1) is coupling constant and $theta$ is a continuous map on W=[-1, 1]. This kind of system is a generalization of the chemical reaction model which was presented by Garcia Guirao and Lampart in [Chaos of a coupled lattice system related with the Belusov–Zhabotinskii reaction, J. Math. Chem. 48 (2010) 159-164] and stated by Kaneko in [Globally coupled chaos violates the law of large numbers but not the central-limit theorem, Phys. Rev. Lett. 65 (1990) 1391-1394], and it is closely related to the Belusov-Zhabotinskii's reaction. In particular, it is shown that for any coupling constant η ∊ [0, 1/2), any r ∊ {1, 2, ...} and θ=Qr, the topological entropy of this system is greater than or equal to rlog(2-2η), and that this system is Li-Yorke chaotic and distributionally chaotic, where the map Q is defined by Q(a)=1-|1-2a|, a ∊ [0, 1], and Q(a)=-Q(-a), a ∊ [-1, 0]. Moreover, we also show that for any c, d with 0≤c≤ d≤ 1, η=0 and θ=Q, this system is distributionally (c, d)-chaotic.