基于LMI鲁棒控制理论的地震激励调谐质量阻尼器设计方法

IF 1.9 4区 工程技术 Q2 ACOUSTICS
Kou Miyamoto, Satoshi Nakano, Jinhua She, Daiki Sato, Yinli Chen, Q. Han
{"title":"基于LMI鲁棒控制理论的地震激励调谐质量阻尼器设计方法","authors":"Kou Miyamoto, Satoshi Nakano, Jinhua She, Daiki Sato, Yinli Chen, Q. Han","doi":"10.1115/1.4053544","DOIUrl":null,"url":null,"abstract":"\n This paper presents a new design method based on a robust-control strategy in the form of a linear matrix inequality (LMI) approach for a passive tuned mass damper (TMD), which is one of the common passive-control devices for structural vibration control. To apply the robust control theory, we first present an equivalent expression that describes a passive TMD as an active TMD. Then, some LMI-based condition is derived that not only guarantees robust stability but also allows us to adjust the robust H¥ performance. In particular, this paper considers the transfer function from a seismic-wave input to structural responses. Unlike other methods, this method formulates the problem to be a convex optimization problem that ensures a global optimal solution and considers uncertainties of mass, damping, and stiffness of a structure for designing a TMD. Numerical example uses both a single-degree-of-freedom (SDOF) and 10DOF models, and seismic waves. The simulation results demonstrated that the TMD that is designed by the presented method has good control performance even if the structural model includes uncertainties, which are the modeling errors.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"203 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design method of tuned mass damper by LMI based robust control theory for seismic excitation\",\"authors\":\"Kou Miyamoto, Satoshi Nakano, Jinhua She, Daiki Sato, Yinli Chen, Q. Han\",\"doi\":\"10.1115/1.4053544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a new design method based on a robust-control strategy in the form of a linear matrix inequality (LMI) approach for a passive tuned mass damper (TMD), which is one of the common passive-control devices for structural vibration control. To apply the robust control theory, we first present an equivalent expression that describes a passive TMD as an active TMD. Then, some LMI-based condition is derived that not only guarantees robust stability but also allows us to adjust the robust H¥ performance. In particular, this paper considers the transfer function from a seismic-wave input to structural responses. Unlike other methods, this method formulates the problem to be a convex optimization problem that ensures a global optimal solution and considers uncertainties of mass, damping, and stiffness of a structure for designing a TMD. Numerical example uses both a single-degree-of-freedom (SDOF) and 10DOF models, and seismic waves. The simulation results demonstrated that the TMD that is designed by the presented method has good control performance even if the structural model includes uncertainties, which are the modeling errors.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"203 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053544\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053544","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于线性矩阵不等式(LMI)鲁棒控制策略的被动调谐质量阻尼器(TMD)的新设计方法。TMD是结构振动控制中常用的被动控制装置之一。为了应用鲁棒控制理论,我们首先提出了一个等效表达式,将被动TMD描述为主动TMD。然后,导出了一些基于lmi的条件,该条件不仅保证鲁棒稳定性,而且允许我们调整鲁棒H性能。特别地,本文考虑了从地震波输入到结构响应的传递函数。与其他方法不同的是,该方法将问题表述为一个保证全局最优解的凸优化问题,并考虑了结构质量、阻尼和刚度的不确定性来设计TMD。数值例子使用了单自由度(SDOF)和10DOF模型,以及地震波。仿真结果表明,即使结构模型存在不确定性(即建模误差),采用该方法设计的TMD仍具有良好的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design method of tuned mass damper by LMI based robust control theory for seismic excitation
This paper presents a new design method based on a robust-control strategy in the form of a linear matrix inequality (LMI) approach for a passive tuned mass damper (TMD), which is one of the common passive-control devices for structural vibration control. To apply the robust control theory, we first present an equivalent expression that describes a passive TMD as an active TMD. Then, some LMI-based condition is derived that not only guarantees robust stability but also allows us to adjust the robust H¥ performance. In particular, this paper considers the transfer function from a seismic-wave input to structural responses. Unlike other methods, this method formulates the problem to be a convex optimization problem that ensures a global optimal solution and considers uncertainties of mass, damping, and stiffness of a structure for designing a TMD. Numerical example uses both a single-degree-of-freedom (SDOF) and 10DOF models, and seismic waves. The simulation results demonstrated that the TMD that is designed by the presented method has good control performance even if the structural model includes uncertainties, which are the modeling errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信