DeltaPy: Python中表格数据增强的框架

Derek Snow
{"title":"DeltaPy: Python中表格数据增强的框架","authors":"Derek Snow","doi":"10.2139/ssrn.3582219","DOIUrl":null,"url":null,"abstract":"A range of data abstractions have come to the fore since the re-emergence of machine learning. This includes procedures like feature engineering, extraction, transformation, and selection, as well as data pre-processing, generation, synthesisation, and augmentation. This report attempts to unify some of this terminology with the development of a bare-bones Python package, DeltaPy.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DeltaPy: A Framework for Tabular Data Augmentation in Python\",\"authors\":\"Derek Snow\",\"doi\":\"10.2139/ssrn.3582219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A range of data abstractions have come to the fore since the re-emergence of machine learning. This includes procedures like feature engineering, extraction, transformation, and selection, as well as data pre-processing, generation, synthesisation, and augmentation. This report attempts to unify some of this terminology with the development of a bare-bones Python package, DeltaPy.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3582219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3582219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自从机器学习重新出现以来,一系列的数据抽象已经脱颖而出。这包括特征工程、提取、转换和选择,以及数据预处理、生成、合成和增强等过程。本报告试图将这些术语与基本Python包DeltaPy的开发统一起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeltaPy: A Framework for Tabular Data Augmentation in Python
A range of data abstractions have come to the fore since the re-emergence of machine learning. This includes procedures like feature engineering, extraction, transformation, and selection, as well as data pre-processing, generation, synthesisation, and augmentation. This report attempts to unify some of this terminology with the development of a bare-bones Python package, DeltaPy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信