通过模块化机器人优化自动化性能

Stefan B. Liu, M. Althoff
{"title":"通过模块化机器人优化自动化性能","authors":"Stefan B. Liu, M. Althoff","doi":"10.1109/ICRA40945.2020.9196590","DOIUrl":null,"url":null,"abstract":"Flexible manufacturing and automation require robots that can be adapted to changing tasks. We propose to use modular robots that are customized from given modules for a specific task. This work presents an algorithm for proposing a module composition that is optimal with respect to performance metrics such as cycle time and energy efficiency, while considering kinematic, dynamic, and obstacle constraints. Tasks are defined as trajectories in Cartesian space, as a list of poses for the robot to reach as fast as possible, or as dexterity in a desired workspace. In a simulated comparison with commercially available industrial robots, we demonstrate the superiority of our approach in randomly generated tasks with respect to the chosen performance metrics. We use our modular robot proModular.1 for the comparison.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"130 1","pages":"4044-4050"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Optimizing performance in automation through modular robots\",\"authors\":\"Stefan B. Liu, M. Althoff\",\"doi\":\"10.1109/ICRA40945.2020.9196590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible manufacturing and automation require robots that can be adapted to changing tasks. We propose to use modular robots that are customized from given modules for a specific task. This work presents an algorithm for proposing a module composition that is optimal with respect to performance metrics such as cycle time and energy efficiency, while considering kinematic, dynamic, and obstacle constraints. Tasks are defined as trajectories in Cartesian space, as a list of poses for the robot to reach as fast as possible, or as dexterity in a desired workspace. In a simulated comparison with commercially available industrial robots, we demonstrate the superiority of our approach in randomly generated tasks with respect to the chosen performance metrics. We use our modular robot proModular.1 for the comparison.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"130 1\",\"pages\":\"4044-4050\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9196590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

柔性制造和自动化要求机器人能够适应不断变化的任务。我们建议使用模块化机器人,根据给定的模块定制特定的任务。这项工作提出了一种算法,可以在考虑运动学、动力学和障碍约束的同时,根据循环时间和能源效率等性能指标提出最优的模块组成。任务被定义为笛卡尔空间中的轨迹,作为机器人尽可能快地达到的姿势列表,或者在期望的工作空间中的灵活性。在与商用工业机器人的模拟比较中,我们证明了我们的方法在随机生成任务中相对于所选择的性能指标的优越性。我们使用模块化机器人proModular。1进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing performance in automation through modular robots
Flexible manufacturing and automation require robots that can be adapted to changing tasks. We propose to use modular robots that are customized from given modules for a specific task. This work presents an algorithm for proposing a module composition that is optimal with respect to performance metrics such as cycle time and energy efficiency, while considering kinematic, dynamic, and obstacle constraints. Tasks are defined as trajectories in Cartesian space, as a list of poses for the robot to reach as fast as possible, or as dexterity in a desired workspace. In a simulated comparison with commercially available industrial robots, we demonstrate the superiority of our approach in randomly generated tasks with respect to the chosen performance metrics. We use our modular robot proModular.1 for the comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信