生存理论在矿业中的应用

IF 1.1 Q2 MATHEMATICS, APPLIED
E. Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin
{"title":"生存理论在矿业中的应用","authors":"E. Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin","doi":"10.3934/naco.2020036","DOIUrl":null,"url":null,"abstract":"The paper deals with an application of survival theory in mineral processing industry. We consider the problem of maximizing copper recovery and determine the best operating conditions based on survival theory. The survival of the system reduces to a problem of maximizing a radius of a sphere inscribed into a polyhedral set defined by the linear regression equations for a flotation process. To demonstrate the effectiveness of the proposed approach, we present a case study for the rougher flotation process of copper-molybdenum ores performed at the Erdenet Mining Corporation(Mongolia).","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"85 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Application of survival theory in Mining industry\",\"authors\":\"E. Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin\",\"doi\":\"10.3934/naco.2020036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with an application of survival theory in mineral processing industry. We consider the problem of maximizing copper recovery and determine the best operating conditions based on survival theory. The survival of the system reduces to a problem of maximizing a radius of a sphere inscribed into a polyhedral set defined by the linear regression equations for a flotation process. To demonstrate the effectiveness of the proposed approach, we present a case study for the rougher flotation process of copper-molybdenum ores performed at the Erdenet Mining Corporation(Mongolia).\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2020036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2020036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

本文论述了生存理论在选矿工业中的应用。考虑铜回收率最大化问题,根据生存理论确定最佳操作条件。该系统的生存问题简化为一个由浮选过程线性回归方程定义的多面体集合内球面半径最大化的问题。为了证明所提出的方法的有效性,我们提出了一个在额尔登特矿业公司(蒙古)进行的铜钼矿石粗浮选过程的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of survival theory in Mining industry
The paper deals with an application of survival theory in mineral processing industry. We consider the problem of maximizing copper recovery and determine the best operating conditions based on survival theory. The survival of the system reduces to a problem of maximizing a radius of a sphere inscribed into a polyhedral set defined by the linear regression equations for a flotation process. To demonstrate the effectiveness of the proposed approach, we present a case study for the rougher flotation process of copper-molybdenum ores performed at the Erdenet Mining Corporation(Mongolia).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信