{"title":"基于遗传算法的差动分级齿辊破碎机多目标优化设计","authors":"La-la ZHAO, Zhong-bin WANG, Feng ZANG","doi":"10.1016/S1006-1266(08)60067-X","DOIUrl":null,"url":null,"abstract":"<div><p>Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing, high breaking efficiency, multi-sieving and has, for the moment, made up for the shortcomings of the toothed roll crusher. The moving jaw of the crusher is a crank-rocker mechanism. For optimizing the dynamic performance and improving the cracking capability of the crusher, a mathematical model was established to optimize the transmission angle <em>γ</em> and to minimize the travel characteristic value <em>m</em> of the moving jaw. Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained. According to the implementation, it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved.</p></div>","PeriodicalId":15315,"journal":{"name":"Journal of China University of Mining and Technology","volume":"18 2","pages":"Pages 316-320"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-1266(08)60067-X","citationCount":"6","resultStr":"{\"title\":\"Multi-object optimization design for differential and grading toothed roll crusher using a genetic algorithm\",\"authors\":\"La-la ZHAO, Zhong-bin WANG, Feng ZANG\",\"doi\":\"10.1016/S1006-1266(08)60067-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing, high breaking efficiency, multi-sieving and has, for the moment, made up for the shortcomings of the toothed roll crusher. The moving jaw of the crusher is a crank-rocker mechanism. For optimizing the dynamic performance and improving the cracking capability of the crusher, a mathematical model was established to optimize the transmission angle <em>γ</em> and to minimize the travel characteristic value <em>m</em> of the moving jaw. Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained. According to the implementation, it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved.</p></div>\",\"PeriodicalId\":15315,\"journal\":{\"name\":\"Journal of China University of Mining and Technology\",\"volume\":\"18 2\",\"pages\":\"Pages 316-320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1006-1266(08)60067-X\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of China University of Mining and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100612660860067X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China University of Mining and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100612660860067X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-object optimization design for differential and grading toothed roll crusher using a genetic algorithm
Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing, high breaking efficiency, multi-sieving and has, for the moment, made up for the shortcomings of the toothed roll crusher. The moving jaw of the crusher is a crank-rocker mechanism. For optimizing the dynamic performance and improving the cracking capability of the crusher, a mathematical model was established to optimize the transmission angle γ and to minimize the travel characteristic value m of the moving jaw. Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained. According to the implementation, it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved.