{"title":"发现信息流上的流行短语","authors":"K. Kamath, James Caverlee","doi":"10.1145/2063576.2063937","DOIUrl":null,"url":null,"abstract":"We study the problem of efficient discovery of trending phrases from high-volume text streams -- be they sequences of Twitter messages, email messages, news articles, or other time-stamped text documents. Most existing approaches return top-k trending phrases. But, this approach neither guarantees that the top-k phrases returned are all trending, nor that all trending phrases are returned. In addition, the value of k is difficult to set and is indifferent to stream dynamics. Hence, we propose an approach that identifies all the trending phrases in a stream and is flexible to the changing stream properties.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"23 1","pages":"2245-2248"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Discovering trending phrases on information streams\",\"authors\":\"K. Kamath, James Caverlee\",\"doi\":\"10.1145/2063576.2063937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of efficient discovery of trending phrases from high-volume text streams -- be they sequences of Twitter messages, email messages, news articles, or other time-stamped text documents. Most existing approaches return top-k trending phrases. But, this approach neither guarantees that the top-k phrases returned are all trending, nor that all trending phrases are returned. In addition, the value of k is difficult to set and is indifferent to stream dynamics. Hence, we propose an approach that identifies all the trending phrases in a stream and is flexible to the changing stream properties.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"23 1\",\"pages\":\"2245-2248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovering trending phrases on information streams
We study the problem of efficient discovery of trending phrases from high-volume text streams -- be they sequences of Twitter messages, email messages, news articles, or other time-stamped text documents. Most existing approaches return top-k trending phrases. But, this approach neither guarantees that the top-k phrases returned are all trending, nor that all trending phrases are returned. In addition, the value of k is difficult to set and is indifferent to stream dynamics. Hence, we propose an approach that identifies all the trending phrases in a stream and is flexible to the changing stream properties.