MRF能量最小化的多尺度变量分组框架

Omer Meir, M. Galun, Stav Yagev, R. Basri, I. Yavneh
{"title":"MRF能量最小化的多尺度变量分组框架","authors":"Omer Meir, M. Galun, Stav Yagev, R. Basri, I. Yavneh","doi":"10.1109/ICCV.2015.210","DOIUrl":null,"url":null,"abstract":"We present a multiscale approach for minimizing the energy associated with Markov Random Fields (MRFs) with energy functions that include arbitrary pairwise potentials. The MRF is represented on a hierarchy of successively coarser scales, where the problem on each scale is itself an MRF with suitably defined potentials. These representations are used to construct an efficient multiscale algorithm that seeks a minimal-energy solution to the original problem. The algorithm is iterative and features a bidirectional crosstalk between fine and coarse representations. We use consistency criteria to guarantee that the energy is nonincreasing throughout the iterative process. The algorithm is evaluated on real-world datasets, achieving competitive performance in relatively short run-times.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"48 1","pages":"1805-1813"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Multiscale Variable-Grouping Framework for MRF Energy Minimization\",\"authors\":\"Omer Meir, M. Galun, Stav Yagev, R. Basri, I. Yavneh\",\"doi\":\"10.1109/ICCV.2015.210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a multiscale approach for minimizing the energy associated with Markov Random Fields (MRFs) with energy functions that include arbitrary pairwise potentials. The MRF is represented on a hierarchy of successively coarser scales, where the problem on each scale is itself an MRF with suitably defined potentials. These representations are used to construct an efficient multiscale algorithm that seeks a minimal-energy solution to the original problem. The algorithm is iterative and features a bidirectional crosstalk between fine and coarse representations. We use consistency criteria to guarantee that the energy is nonincreasing throughout the iterative process. The algorithm is evaluated on real-world datasets, achieving competitive performance in relatively short run-times.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"48 1\",\"pages\":\"1805-1813\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种多尺度方法,用于最小化与包含任意成对势的能量函数的马尔可夫随机场(mrf)相关的能量。MRF被表示在一个连续较粗尺度的层次结构上,其中每个尺度上的问题本身就是一个具有适当定义的势的MRF。这些表示用于构建一个高效的多尺度算法,该算法寻求原始问题的最小能量解。该算法是迭代的,并且具有精细和粗糙表示之间的双向串扰。我们使用一致性准则来保证在整个迭代过程中能量不增加。该算法在真实世界的数据集上进行了评估,在相对较短的运行时间内实现了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multiscale Variable-Grouping Framework for MRF Energy Minimization
We present a multiscale approach for minimizing the energy associated with Markov Random Fields (MRFs) with energy functions that include arbitrary pairwise potentials. The MRF is represented on a hierarchy of successively coarser scales, where the problem on each scale is itself an MRF with suitably defined potentials. These representations are used to construct an efficient multiscale algorithm that seeks a minimal-energy solution to the original problem. The algorithm is iterative and features a bidirectional crosstalk between fine and coarse representations. We use consistency criteria to guarantee that the energy is nonincreasing throughout the iterative process. The algorithm is evaluated on real-world datasets, achieving competitive performance in relatively short run-times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信