基于PID整定的自动调压系统优化技术比较研究

Mohamed Cherif Rais, Fatma Zohra Dekhannji, A. Recioui, Mohamed Sadek Rechid, Lahcen Djedi
{"title":"基于PID整定的自动调压系统优化技术比较研究","authors":"Mohamed Cherif Rais, Fatma Zohra Dekhannji, A. Recioui, Mohamed Sadek Rechid, Lahcen Djedi","doi":"10.3390/engproc2022014021","DOIUrl":null,"url":null,"abstract":"A comparative study is performed to design an optimal PID controller for an automatic voltage regulator system using different optimization techniques. The presented approaches are referred to as particle swarm optimization (PSO) algorithm, cuckoo search optimization (CSO) algorithm, moth flame optimization (MFO) algorithm, water cycle optimization (WCO) algorithm, teaching–learning-based optimization (TLBO) algorithm, and hill climbing optimization (HCO) algorithm. Transient response parameters, which are rise time Tr, settling time Ts, and percentage overshoot Mp, are used as comparison criteria. The integral time absolute error ITAE is the used performance index. All the proposed optimization techniques improved the transient response of the AVR system in a different way and gave good preliminary results.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparative Study of Optimization Techniques Based PID Tuning for Automatic Voltage Regulator System\",\"authors\":\"Mohamed Cherif Rais, Fatma Zohra Dekhannji, A. Recioui, Mohamed Sadek Rechid, Lahcen Djedi\",\"doi\":\"10.3390/engproc2022014021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comparative study is performed to design an optimal PID controller for an automatic voltage regulator system using different optimization techniques. The presented approaches are referred to as particle swarm optimization (PSO) algorithm, cuckoo search optimization (CSO) algorithm, moth flame optimization (MFO) algorithm, water cycle optimization (WCO) algorithm, teaching–learning-based optimization (TLBO) algorithm, and hill climbing optimization (HCO) algorithm. Transient response parameters, which are rise time Tr, settling time Ts, and percentage overshoot Mp, are used as comparison criteria. The integral time absolute error ITAE is the used performance index. All the proposed optimization techniques improved the transient response of the AVR system in a different way and gave good preliminary results.\",\"PeriodicalId\":11748,\"journal\":{\"name\":\"Engineering Proceedings\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/engproc2022014021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2022014021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

采用不同的优化技术,对自动调压系统的最优PID控制器进行了比较研究。提出的方法包括粒子群优化(PSO)算法、杜鹃搜索优化(CSO)算法、蛾焰优化(MFO)算法、水循环优化(WCO)算法、基于教学的优化(TLBO)算法和爬山优化(HCO)算法。瞬态响应参数,即上升时间Tr,沉降时间Ts和百分比超调Mp,被用作比较标准。积分时间绝对误差ITAE是常用的性能指标。所提出的优化技术都以不同的方式改善了AVR系统的暂态响应,并取得了良好的初步效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study of Optimization Techniques Based PID Tuning for Automatic Voltage Regulator System
A comparative study is performed to design an optimal PID controller for an automatic voltage regulator system using different optimization techniques. The presented approaches are referred to as particle swarm optimization (PSO) algorithm, cuckoo search optimization (CSO) algorithm, moth flame optimization (MFO) algorithm, water cycle optimization (WCO) algorithm, teaching–learning-based optimization (TLBO) algorithm, and hill climbing optimization (HCO) algorithm. Transient response parameters, which are rise time Tr, settling time Ts, and percentage overshoot Mp, are used as comparison criteria. The integral time absolute error ITAE is the used performance index. All the proposed optimization techniques improved the transient response of the AVR system in a different way and gave good preliminary results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信