EMD和小波方法在太阳黑子数据中的应用

Yong Wang, Yuanyuan Ding, Qingzhou Luo, Qilong Miao
{"title":"EMD和小波方法在太阳黑子数据中的应用","authors":"Yong Wang, Yuanyuan Ding, Qingzhou Luo, Qilong Miao","doi":"10.1109/ICIST.2011.5765337","DOIUrl":null,"url":null,"abstract":"The sunspot is one of the main cause of climate change. Research on the sunspot cycle is conducive to study climate change. Based on new approach, using time series analysis technique, empirical mode decomposition (EMD) and wavelet, to reveal the detail features of the variability of sunspot data on various time scales. In comparison with wavelet transform, EMD can analyze non-stationary and non-linear time series data and reveal the main characteristics of time series on time-frequency domains precisely.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"331 1","pages":"676-678"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of EMD and wavelet method to sunspot data\",\"authors\":\"Yong Wang, Yuanyuan Ding, Qingzhou Luo, Qilong Miao\",\"doi\":\"10.1109/ICIST.2011.5765337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sunspot is one of the main cause of climate change. Research on the sunspot cycle is conducive to study climate change. Based on new approach, using time series analysis technique, empirical mode decomposition (EMD) and wavelet, to reveal the detail features of the variability of sunspot data on various time scales. In comparison with wavelet transform, EMD can analyze non-stationary and non-linear time series data and reveal the main characteristics of time series on time-frequency domains precisely.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"331 1\",\"pages\":\"676-678\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

太阳黑子是气候变化的主要原因之一。对太阳黑子周期的研究有助于研究气候变化。基于该方法,利用时间序列分析技术、经验模态分解(EMD)和小波分析,揭示了太阳黑子数据在不同时间尺度上的变化特征。与小波变换相比,EMD可以分析非平稳和非线性时间序列数据,准确地揭示时间序列在时频域上的主要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of EMD and wavelet method to sunspot data
The sunspot is one of the main cause of climate change. Research on the sunspot cycle is conducive to study climate change. Based on new approach, using time series analysis technique, empirical mode decomposition (EMD) and wavelet, to reveal the detail features of the variability of sunspot data on various time scales. In comparison with wavelet transform, EMD can analyze non-stationary and non-linear time series data and reveal the main characteristics of time series on time-frequency domains precisely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信