关于具有Caputo导数的分数阶迭代微分方程的解

IF 0.7 Q2 MATHEMATICS
Alemnew Abera, Benyam Mebrate
{"title":"关于具有Caputo导数的分数阶迭代微分方程的解","authors":"Alemnew Abera, Benyam Mebrate","doi":"10.1155/2023/5598990","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we are concerned with two points. First, the existence and uniqueness of the iterative fractional differential equation <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msup>\n <mrow />\n <mrow>\n <mi>c</mi>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mi>D</mi>\n </mrow>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msup>\n <mi>c</mi>\n <mi>x</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mi>x</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>,</mo>\n <mi>x</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>g</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n </mfenced>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> are presented using the fixed-point theorem by imposing some conditions on <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>f</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>g</mi>\n </math>\n </jats:inline-formula>. Second, we proposed the iterative scheme that converges to the fixed point. The convergence of the iterative scheme is proved, and different iterative schemes are compared with the proposed iterative scheme. We prepared algorithms to implement the proposed iterative scheme. We have successfully applied the proposed iterative scheme to the given iterative differential equations by taking examples for different values of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>α</mi>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Solutions to Fractional Iterative Differential Equations with Caputo Derivative\",\"authors\":\"Alemnew Abera, Benyam Mebrate\",\"doi\":\"10.1155/2023/5598990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this paper, we are concerned with two points. First, the existence and uniqueness of the iterative fractional differential equation <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msup>\\n <mrow />\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </msup>\\n <msup>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </msup>\\n <mi>c</mi>\\n <mi>x</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n <mo>=</mo>\\n <mi>f</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>,</mo>\\n <mi>x</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>g</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> are presented using the fixed-point theorem by imposing some conditions on <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>f</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>g</mi>\\n </math>\\n </jats:inline-formula>. Second, we proposed the iterative scheme that converges to the fixed point. The convergence of the iterative scheme is proved, and different iterative schemes are compared with the proposed iterative scheme. We prepared algorithms to implement the proposed iterative scheme. We have successfully applied the proposed iterative scheme to the given iterative differential equations by taking examples for different values of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>α</mi>\\n </math>\\n </jats:inline-formula>.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5598990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5598990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们关注两点。首先,迭代分数阶微分方程c D α的存在唯一性C x t = f t,xt,X g X t用不动点定理通过对f和g .其次,提出收敛于不动点的迭代方案。证明了该迭代方案的收敛性,并与所提出的迭代方案进行了比较。我们准备了算法来实现所提出的迭代方案。通过对不同α值的例子,我们成功地将所提出的迭代格式应用于给定的迭代微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Solutions to Fractional Iterative Differential Equations with Caputo Derivative
In this paper, we are concerned with two points. First, the existence and uniqueness of the iterative fractional differential equation c D α c x t = f t , x t , x g x t are presented using the fixed-point theorem by imposing some conditions on f and g . Second, we proposed the iterative scheme that converges to the fixed point. The convergence of the iterative scheme is proved, and different iterative schemes are compared with the proposed iterative scheme. We prepared algorithms to implement the proposed iterative scheme. We have successfully applied the proposed iterative scheme to the given iterative differential equations by taking examples for different values of α .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信