{"title":"使用超宽带雷达测量行走和坐姿运动和卷积神经网络的个人识别","authors":"T. Sakamoto","doi":"10.1587/transinf.2018EDP7435","DOIUrl":null,"url":null,"abstract":"This study proposes a personal identification technique that applies machine learning with a two-layered convolutional neural network to spectrogram images obtained from radar echoes of a target person in motion. The walking and sitting motions of six participants were measured using an ultrawideband radar system. Time-frequency analysis was applied to the radar signal to generate spectrogram images containing the micro-Doppler components associated with limb movements. A convolutional neural network was trained using the spectrogram images with personal labels to achieve radar-based personal identification. The personal identification accuracies were evaluated experimentally to demonstrate the effectiveness of the proposed technique.","PeriodicalId":8487,"journal":{"name":"arXiv: Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Personal Identification Using Ultrawideband Radar Measurement of Walking and Sitting Motions and a Convolutional Neural Network\",\"authors\":\"T. Sakamoto\",\"doi\":\"10.1587/transinf.2018EDP7435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a personal identification technique that applies machine learning with a two-layered convolutional neural network to spectrogram images obtained from radar echoes of a target person in motion. The walking and sitting motions of six participants were measured using an ultrawideband radar system. Time-frequency analysis was applied to the radar signal to generate spectrogram images containing the micro-Doppler components associated with limb movements. A convolutional neural network was trained using the spectrogram images with personal labels to achieve radar-based personal identification. The personal identification accuracies were evaluated experimentally to demonstrate the effectiveness of the proposed technique.\",\"PeriodicalId\":8487,\"journal\":{\"name\":\"arXiv: Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transinf.2018EDP7435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transinf.2018EDP7435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Personal Identification Using Ultrawideband Radar Measurement of Walking and Sitting Motions and a Convolutional Neural Network
This study proposes a personal identification technique that applies machine learning with a two-layered convolutional neural network to spectrogram images obtained from radar echoes of a target person in motion. The walking and sitting motions of six participants were measured using an ultrawideband radar system. Time-frequency analysis was applied to the radar signal to generate spectrogram images containing the micro-Doppler components associated with limb movements. A convolutional neural network was trained using the spectrogram images with personal labels to achieve radar-based personal identification. The personal identification accuracies were evaluated experimentally to demonstrate the effectiveness of the proposed technique.