{"title":"多版本数据仓库中的模式演化","authors":"Waqas Ahmed, E. Zimányi, A. Vaisman, R. Wrembel","doi":"10.4018/ijdwm.2021100101","DOIUrl":null,"url":null,"abstract":"Data warehouses (DWs) evolve in both their content and schema due to changes of user requirements, business processes, or external sources to name a few. Although multiple approaches using temporal and/or multiversion DWs have been proposed to handle these changes, an efficient solution for this problem is still lacking. The authors' approach is to separate concerns and use temporal DWs to deal with content changes, and multiversion DWs to deal with schema changes. To address the former, previously, they have proposed a temporal multidimensional (MD) model. In this paper, they propose a multiversion MD model for schema evolution to tackle the latter problem. The two models complement each other and allow managing both content and schema evolution. In this paper, the semantics of schema modification operators (SMOs) to derive various schema versions are given. It is also shown how online analytical processing (OLAP) operations like roll-up work on the model. Finally, the mapping from the multiversion MD model to a relational schema is given along with OLAP operations in standard SQL.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schema Evolution in Multiversion Data Warehouses\",\"authors\":\"Waqas Ahmed, E. Zimányi, A. Vaisman, R. Wrembel\",\"doi\":\"10.4018/ijdwm.2021100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data warehouses (DWs) evolve in both their content and schema due to changes of user requirements, business processes, or external sources to name a few. Although multiple approaches using temporal and/or multiversion DWs have been proposed to handle these changes, an efficient solution for this problem is still lacking. The authors' approach is to separate concerns and use temporal DWs to deal with content changes, and multiversion DWs to deal with schema changes. To address the former, previously, they have proposed a temporal multidimensional (MD) model. In this paper, they propose a multiversion MD model for schema evolution to tackle the latter problem. The two models complement each other and allow managing both content and schema evolution. In this paper, the semantics of schema modification operators (SMOs) to derive various schema versions are given. It is also shown how online analytical processing (OLAP) operations like roll-up work on the model. Finally, the mapping from the multiversion MD model to a relational schema is given along with OLAP operations in standard SQL.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.2021100101\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.2021100101","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Data warehouses (DWs) evolve in both their content and schema due to changes of user requirements, business processes, or external sources to name a few. Although multiple approaches using temporal and/or multiversion DWs have been proposed to handle these changes, an efficient solution for this problem is still lacking. The authors' approach is to separate concerns and use temporal DWs to deal with content changes, and multiversion DWs to deal with schema changes. To address the former, previously, they have proposed a temporal multidimensional (MD) model. In this paper, they propose a multiversion MD model for schema evolution to tackle the latter problem. The two models complement each other and allow managing both content and schema evolution. In this paper, the semantics of schema modification operators (SMOs) to derive various schema versions are given. It is also shown how online analytical processing (OLAP) operations like roll-up work on the model. Finally, the mapping from the multiversion MD model to a relational schema is given along with OLAP operations in standard SQL.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving