用于分类可视化的平行坐标度量

J. Alsakran, N. Alhindawi, L. Alnemer
{"title":"用于分类可视化的平行坐标度量","authors":"J. Alsakran, N. Alhindawi, L. Alnemer","doi":"10.1109/IACS.2016.7476078","DOIUrl":null,"url":null,"abstract":"The high dimensionality of data presents a major issue in understanding and interpreting the results of classification learning. Among the various approaches that address this issue, parallel coordinates visualization has proven its capabilities to enhance investigation and comprehension of data dimension features especially when the number of dimensions is high and there are numerous output classes. We propose several parallel coordinates metrics, namely entropy, class ordering, and edge crossing, to further facilitate inspection of data features and their relevance to output class. Experiments on real world datasets are presented to show the effectiveness of the proposed approach.","PeriodicalId":6579,"journal":{"name":"2016 7th International Conference on Information and Communication Systems (ICICS)","volume":"1 1","pages":"7-12"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Parallel coordinates metrics for classification visualization\",\"authors\":\"J. Alsakran, N. Alhindawi, L. Alnemer\",\"doi\":\"10.1109/IACS.2016.7476078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high dimensionality of data presents a major issue in understanding and interpreting the results of classification learning. Among the various approaches that address this issue, parallel coordinates visualization has proven its capabilities to enhance investigation and comprehension of data dimension features especially when the number of dimensions is high and there are numerous output classes. We propose several parallel coordinates metrics, namely entropy, class ordering, and edge crossing, to further facilitate inspection of data features and their relevance to output class. Experiments on real world datasets are presented to show the effectiveness of the proposed approach.\",\"PeriodicalId\":6579,\"journal\":{\"name\":\"2016 7th International Conference on Information and Communication Systems (ICICS)\",\"volume\":\"1 1\",\"pages\":\"7-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Information and Communication Systems (ICICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACS.2016.7476078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2016.7476078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

数据的高维是理解和解释分类学习结果的一个主要问题。在解决这个问题的各种方法中,平行坐标可视化已经证明了它能够增强对数据维度特征的调查和理解,特别是在维度数量很高并且有许多输出类的情况下。我们提出了几个平行坐标度量,即熵、类排序和边缘交叉,以进一步促进对数据特征及其与输出类的相关性的检查。在实际数据集上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel coordinates metrics for classification visualization
The high dimensionality of data presents a major issue in understanding and interpreting the results of classification learning. Among the various approaches that address this issue, parallel coordinates visualization has proven its capabilities to enhance investigation and comprehension of data dimension features especially when the number of dimensions is high and there are numerous output classes. We propose several parallel coordinates metrics, namely entropy, class ordering, and edge crossing, to further facilitate inspection of data features and their relevance to output class. Experiments on real world datasets are presented to show the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信