{"title":"特征设计通过等距嵌入:应用到翼型逆设计","authors":"Qiuyi Chen, M. Fuge","doi":"10.1115/1.4063363","DOIUrl":null,"url":null,"abstract":"\n Many design problems involve reasoning about points in high-dimensional space. A common strategy is to first embed these high-dimensional points into a low-dimensional latent space. We propose that a good embedding should be isometric---i.e., preserving the geodesic distance between points on the data manifold in the latent space. However, enforcing isometry is non-trivial for common Neural embedding models such as autoencoders. Moreover, while theoretically appealing, it is unclear to what extent is enforcing isometry necessary for a given design analysis. This paper answers these questions by constructing an isometric embedding via an isometric autoencoder, which we employ to analyze an inverse airfoil design problem. Specifically, the paper describes how to train an isometric autoencoder and demonstrates its usefulness compared to non-isometric autoencoders on the UIUC airfoil dataset. Our ablation study illustrates that enforcing isometry is necessary for accurately discovering clusters through the latent space. We also show how isometric autoencoders can uncover pathologies in typical gradient-based Shape Optimization solvers through an analysis on the SU2-optimized airfoil dataset, wherein we find an over-reliance of the gradient solver on angle of attack. Overall, this paper motivates the use of isometry constraints in Neural embedding models, particularly in cases where researchers or designers intend to use distance-based analysis measures to analyze designs within the latent space. While this work focuses on airfoil design as an illustrative example, it applies to any domain where analyzing isometric design or data embeddings would be useful.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"31 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterizing Designs via Isometric Embeddings: Applications to Airfoil Inverse Design\",\"authors\":\"Qiuyi Chen, M. Fuge\",\"doi\":\"10.1115/1.4063363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Many design problems involve reasoning about points in high-dimensional space. A common strategy is to first embed these high-dimensional points into a low-dimensional latent space. We propose that a good embedding should be isometric---i.e., preserving the geodesic distance between points on the data manifold in the latent space. However, enforcing isometry is non-trivial for common Neural embedding models such as autoencoders. Moreover, while theoretically appealing, it is unclear to what extent is enforcing isometry necessary for a given design analysis. This paper answers these questions by constructing an isometric embedding via an isometric autoencoder, which we employ to analyze an inverse airfoil design problem. Specifically, the paper describes how to train an isometric autoencoder and demonstrates its usefulness compared to non-isometric autoencoders on the UIUC airfoil dataset. Our ablation study illustrates that enforcing isometry is necessary for accurately discovering clusters through the latent space. We also show how isometric autoencoders can uncover pathologies in typical gradient-based Shape Optimization solvers through an analysis on the SU2-optimized airfoil dataset, wherein we find an over-reliance of the gradient solver on angle of attack. Overall, this paper motivates the use of isometry constraints in Neural embedding models, particularly in cases where researchers or designers intend to use distance-based analysis measures to analyze designs within the latent space. While this work focuses on airfoil design as an illustrative example, it applies to any domain where analyzing isometric design or data embeddings would be useful.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063363\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063363","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Characterizing Designs via Isometric Embeddings: Applications to Airfoil Inverse Design
Many design problems involve reasoning about points in high-dimensional space. A common strategy is to first embed these high-dimensional points into a low-dimensional latent space. We propose that a good embedding should be isometric---i.e., preserving the geodesic distance between points on the data manifold in the latent space. However, enforcing isometry is non-trivial for common Neural embedding models such as autoencoders. Moreover, while theoretically appealing, it is unclear to what extent is enforcing isometry necessary for a given design analysis. This paper answers these questions by constructing an isometric embedding via an isometric autoencoder, which we employ to analyze an inverse airfoil design problem. Specifically, the paper describes how to train an isometric autoencoder and demonstrates its usefulness compared to non-isometric autoencoders on the UIUC airfoil dataset. Our ablation study illustrates that enforcing isometry is necessary for accurately discovering clusters through the latent space. We also show how isometric autoencoders can uncover pathologies in typical gradient-based Shape Optimization solvers through an analysis on the SU2-optimized airfoil dataset, wherein we find an over-reliance of the gradient solver on angle of attack. Overall, this paper motivates the use of isometry constraints in Neural embedding models, particularly in cases where researchers or designers intend to use distance-based analysis measures to analyze designs within the latent space. While this work focuses on airfoil design as an illustrative example, it applies to any domain where analyzing isometric design or data embeddings would be useful.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.