{"title":"紧CR流形上环面等变Szegö核的渐近性","authors":"Wei-Chuan Shen","doi":"10.21915/bimas.2019303","DOIUrl":null,"url":null,"abstract":"For a compact CR manifold $(X,T^{1,0}X)$ of dimension $2n+1$, $n\\geq 2$, admitting a $S^1\\times T^d$ action, if the lattice point $(-p_1,\\cdots,-p_d)\\in\\mathbb{Z}^{d}$ is a regular value of the associate CR moment map $\\mu$, then we establish the asymptotic expansion of the torus equivariant Szegő kernel $\\Pi^{(0)}_{m,mp_1,\\cdots,mp_d}(x,y)$ as $m\\to +\\infty$ under certain assumptions of the positivity of Levi form and the torus action on $Y:=\\mu^{-1}(-p_1,\\cdots,-p_d)$.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"27 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Asymptotics of torus equivariant Szegö kernel on a compact CR manifold\",\"authors\":\"Wei-Chuan Shen\",\"doi\":\"10.21915/bimas.2019303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a compact CR manifold $(X,T^{1,0}X)$ of dimension $2n+1$, $n\\\\geq 2$, admitting a $S^1\\\\times T^d$ action, if the lattice point $(-p_1,\\\\cdots,-p_d)\\\\in\\\\mathbb{Z}^{d}$ is a regular value of the associate CR moment map $\\\\mu$, then we establish the asymptotic expansion of the torus equivariant Szegő kernel $\\\\Pi^{(0)}_{m,mp_1,\\\\cdots,mp_d}(x,y)$ as $m\\\\to +\\\\infty$ under certain assumptions of the positivity of Levi form and the torus action on $Y:=\\\\mu^{-1}(-p_1,\\\\cdots,-p_d)$.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2019303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2019303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotics of torus equivariant Szegö kernel on a compact CR manifold
For a compact CR manifold $(X,T^{1,0}X)$ of dimension $2n+1$, $n\geq 2$, admitting a $S^1\times T^d$ action, if the lattice point $(-p_1,\cdots,-p_d)\in\mathbb{Z}^{d}$ is a regular value of the associate CR moment map $\mu$, then we establish the asymptotic expansion of the torus equivariant Szegő kernel $\Pi^{(0)}_{m,mp_1,\cdots,mp_d}(x,y)$ as $m\to +\infty$ under certain assumptions of the positivity of Levi form and the torus action on $Y:=\mu^{-1}(-p_1,\cdots,-p_d)$.