三维对象分类的内容自适应金字塔表示

Tsampikos Kounalakis, N. Boulgouris, G. Triantafyllidis
{"title":"三维对象分类的内容自适应金字塔表示","authors":"Tsampikos Kounalakis, N. Boulgouris, G. Triantafyllidis","doi":"10.1109/ICIP.2016.7532353","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel representation for the classification of 3D images. Unlike most current approaches, our representation is not based on a fixed pyramid but adapts to image content and uses image regions instead of rectangular pyramid scales. Image characteristics, such as depth and color, are used for defining regions within images. Multiple region scales are formed in order to construct the proposed pyramid image representation. The proposed method achieves excellent results in comparison to conventional representations.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"10 1","pages":"231-235"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Content-adaptive pyramid representation for 3D object classification\",\"authors\":\"Tsampikos Kounalakis, N. Boulgouris, G. Triantafyllidis\",\"doi\":\"10.1109/ICIP.2016.7532353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a novel representation for the classification of 3D images. Unlike most current approaches, our representation is not based on a fixed pyramid but adapts to image content and uses image regions instead of rectangular pyramid scales. Image characteristics, such as depth and color, are used for defining regions within images. Multiple region scales are formed in order to construct the proposed pyramid image representation. The proposed method achieves excellent results in comparison to conventional representations.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"10 1\",\"pages\":\"231-235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的三维图像分类表示方法。与大多数当前方法不同,我们的表示不是基于固定的金字塔,而是适应图像内容,并使用图像区域而不是矩形金字塔尺度。图像特征,如深度和颜色,用于定义图像中的区域。为了构造所提出的金字塔图像表示,形成了多个区域尺度。与传统的表示方法相比,该方法取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content-adaptive pyramid representation for 3D object classification
In this paper we introduce a novel representation for the classification of 3D images. Unlike most current approaches, our representation is not based on a fixed pyramid but adapts to image content and uses image regions instead of rectangular pyramid scales. Image characteristics, such as depth and color, are used for defining regions within images. Multiple region scales are formed in order to construct the proposed pyramid image representation. The proposed method achieves excellent results in comparison to conventional representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信