{"title":"空间可靠度在混凝土结构概率研究中的应用:以碳化诱发腐蚀的钢筋混凝土梁为例","authors":"G. Defaux, M. Pendola, B. Sudret","doi":"10.1051/JP4:2006136025","DOIUrl":null,"url":null,"abstract":"Several methods, simple or more sophisticated, are tested to determine useful information for reliability problems involving spatial variability. The methods are developed around a simple example of a reinforced concrete beam subjected to carbonation inducing corrosion. A point-in-space reliability analysis is conducted to estimate a first indicator on the length to be replaced. Then, random field are introduced and are taken into account in the reliability problem using simulations methods to determine the empirical cumulative density function (CDF) of the length to be repaired and its moments. Finally, analytical formulations are used to estimate the same moments but with small computational effort.","PeriodicalId":14838,"journal":{"name":"Journal De Physique Iv","volume":"1 1","pages":"243-253"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using spatial reliability in the probabilistic study of concrete structures: The example of a reinforced concrete beam subjected to carbonatation inducing corrosion\",\"authors\":\"G. Defaux, M. Pendola, B. Sudret\",\"doi\":\"10.1051/JP4:2006136025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several methods, simple or more sophisticated, are tested to determine useful information for reliability problems involving spatial variability. The methods are developed around a simple example of a reinforced concrete beam subjected to carbonation inducing corrosion. A point-in-space reliability analysis is conducted to estimate a first indicator on the length to be replaced. Then, random field are introduced and are taken into account in the reliability problem using simulations methods to determine the empirical cumulative density function (CDF) of the length to be repaired and its moments. Finally, analytical formulations are used to estimate the same moments but with small computational effort.\",\"PeriodicalId\":14838,\"journal\":{\"name\":\"Journal De Physique Iv\",\"volume\":\"1 1\",\"pages\":\"243-253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique Iv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JP4:2006136025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Iv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JP4:2006136025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using spatial reliability in the probabilistic study of concrete structures: The example of a reinforced concrete beam subjected to carbonatation inducing corrosion
Several methods, simple or more sophisticated, are tested to determine useful information for reliability problems involving spatial variability. The methods are developed around a simple example of a reinforced concrete beam subjected to carbonation inducing corrosion. A point-in-space reliability analysis is conducted to estimate a first indicator on the length to be replaced. Then, random field are introduced and are taken into account in the reliability problem using simulations methods to determine the empirical cumulative density function (CDF) of the length to be repaired and its moments. Finally, analytical formulations are used to estimate the same moments but with small computational effort.