希尔伯特空间中随机函数估计的最优线性滤波器

P. Howlett, A. Torokhti
{"title":"希尔伯特空间中随机函数估计的最优线性滤波器","authors":"P. Howlett, A. Torokhti","doi":"10.1017/S1446181120000188","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$\\boldsymbol{f}$\n be a square-integrable, zero-mean, random vector with observable realizations in a Hilbert space H, and let \n$\\boldsymbol{g}$\n be an associated square-integrable, zero-mean, random vector with realizations which are not observable in a Hilbert space K. We seek an optimal filter in the form of a closed linear operator X acting on the observable realizations of a proximate vector \n$\\boldsymbol{f}_{\\epsilon } \\approx \\boldsymbol{f}$\n that provides the best estimate \n$\\widehat{\\boldsymbol{g}}_{\\epsilon} = X \\boldsymbol{f}_{\\epsilon}$\n of the vector \n$\\boldsymbol{g}$\n . We assume the required covariance operators are known. The results are illustrated with a typical example.","PeriodicalId":74944,"journal":{"name":"The ANZIAM journal","volume":"53 1","pages":"274 - 301"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN OPTIMAL LINEAR FILTER FOR ESTIMATION OF RANDOM FUNCTIONS IN HILBERT SPACE\",\"authors\":\"P. Howlett, A. Torokhti\",\"doi\":\"10.1017/S1446181120000188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$\\\\boldsymbol{f}$\\n be a square-integrable, zero-mean, random vector with observable realizations in a Hilbert space H, and let \\n$\\\\boldsymbol{g}$\\n be an associated square-integrable, zero-mean, random vector with realizations which are not observable in a Hilbert space K. We seek an optimal filter in the form of a closed linear operator X acting on the observable realizations of a proximate vector \\n$\\\\boldsymbol{f}_{\\\\epsilon } \\\\approx \\\\boldsymbol{f}$\\n that provides the best estimate \\n$\\\\widehat{\\\\boldsymbol{g}}_{\\\\epsilon} = X \\\\boldsymbol{f}_{\\\\epsilon}$\\n of the vector \\n$\\\\boldsymbol{g}$\\n . We assume the required covariance operators are known. The results are illustrated with a typical example.\",\"PeriodicalId\":74944,\"journal\":{\"name\":\"The ANZIAM journal\",\"volume\":\"53 1\",\"pages\":\"274 - 301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ANZIAM journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1446181120000188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ANZIAM journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1446181120000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$\boldsymbol{f}$为Hilbert空间H中具有可观测实现的平方可积、零均值随机向量,设$\boldsymbol{g}$为相关平方可积、零均值、具有在Hilbert空间k中不可观察到的实现的随机向量。我们寻求一个最优滤波器,其形式为一个封闭线性算子X作用于一个近似向量$\boldsymbol{f}_{\epsilon } \approx \boldsymbol{f}$的可观察实现,该近似向量提供了对该向量$\boldsymbol{g}$的最佳估计$\widehat{\boldsymbol{g}}_{\epsilon} = X \boldsymbol{f}_{\epsilon}$。我们假设所需的协方差算子是已知的。最后用一个典型实例说明了计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN OPTIMAL LINEAR FILTER FOR ESTIMATION OF RANDOM FUNCTIONS IN HILBERT SPACE
Abstract Let $\boldsymbol{f}$ be a square-integrable, zero-mean, random vector with observable realizations in a Hilbert space H, and let $\boldsymbol{g}$ be an associated square-integrable, zero-mean, random vector with realizations which are not observable in a Hilbert space K. We seek an optimal filter in the form of a closed linear operator X acting on the observable realizations of a proximate vector $\boldsymbol{f}_{\epsilon } \approx \boldsymbol{f}$ that provides the best estimate $\widehat{\boldsymbol{g}}_{\epsilon} = X \boldsymbol{f}_{\epsilon}$ of the vector $\boldsymbol{g}$ . We assume the required covariance operators are known. The results are illustrated with a typical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信