使用较小公钥的量子数字签名

B. Škorić
{"title":"使用较小公钥的量子数字签名","authors":"B. Škorić","doi":"10.26421/QIC21.11-12-4","DOIUrl":null,"url":null,"abstract":"We introduce a variant of quantum signatures in which nonbinary symbols are signed instead of bits. The public keys are fingerprinting states, just as in the scheme of Gottesman and Chuang [1], but we allow for multiple ways to reveal the private key partially. The effect of this modification is a reduction of the number of qubits expended per message bit. Asymptotically the expenditure becomes as low as one qubit per message bit. We give a security proof, and we present numerical results that show how the improvement in public key size depends on the message length.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"11 1","pages":"955-973"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum digital signatures with smaller public keys\",\"authors\":\"B. Škorić\",\"doi\":\"10.26421/QIC21.11-12-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a variant of quantum signatures in which nonbinary symbols are signed instead of bits. The public keys are fingerprinting states, just as in the scheme of Gottesman and Chuang [1], but we allow for multiple ways to reveal the private key partially. The effect of this modification is a reduction of the number of qubits expended per message bit. Asymptotically the expenditure becomes as low as one qubit per message bit. We give a security proof, and we present numerical results that show how the improvement in public key size depends on the message length.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"11 1\",\"pages\":\"955-973\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC21.11-12-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.11-12-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种量子签名的变体,其中非二进制符号代替比特进行签名。公钥是指纹状态,就像Gottesman和Chuang[1]的方案一样,但我们允许多种方式部分显示私钥。这种修改的效果是减少每个消息位所消耗的量子位的数量。渐近地,每个消息位的开销降低到一个量子位。我们给出了安全性证明,并给出了数值结果,表明公钥大小的改进是如何依赖于消息长度的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum digital signatures with smaller public keys
We introduce a variant of quantum signatures in which nonbinary symbols are signed instead of bits. The public keys are fingerprinting states, just as in the scheme of Gottesman and Chuang [1], but we allow for multiple ways to reveal the private key partially. The effect of this modification is a reduction of the number of qubits expended per message bit. Asymptotically the expenditure becomes as low as one qubit per message bit. We give a security proof, and we present numerical results that show how the improvement in public key size depends on the message length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信