{"title":"修正重力下的辐射不稳定性","authors":"S. Cotsakis, Dimitrios Trachilis","doi":"10.1142/S0217751X21500603","DOIUrl":null,"url":null,"abstract":"We study the problem of the instability of inhomogeneous radiation universes in quadratic lagrangian theories of gravity written as a system of evolution equations with constraints. We construct formal series expansions and show that the resulting solutions have a smaller number of arbitrary functions than that required in a general solution. These results continue to hold for more general polynomial extensions of general relativity.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The radiation instability in modified gravity\",\"authors\":\"S. Cotsakis, Dimitrios Trachilis\",\"doi\":\"10.1142/S0217751X21500603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of the instability of inhomogeneous radiation universes in quadratic lagrangian theories of gravity written as a system of evolution equations with constraints. We construct formal series expansions and show that the resulting solutions have a smaller number of arbitrary functions than that required in a general solution. These results continue to hold for more general polynomial extensions of general relativity.\",\"PeriodicalId\":8455,\"journal\":{\"name\":\"arXiv: General Relativity and Quantum Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Relativity and Quantum Cosmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217751X21500603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217751X21500603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the problem of the instability of inhomogeneous radiation universes in quadratic lagrangian theories of gravity written as a system of evolution equations with constraints. We construct formal series expansions and show that the resulting solutions have a smaller number of arbitrary functions than that required in a general solution. These results continue to hold for more general polynomial extensions of general relativity.