价值

Kaustav Bhattacharjee, Aritra Dasgupta
{"title":"价值","authors":"Kaustav Bhattacharjee, Aritra Dasgupta","doi":"10.1145/3597465.3605225","DOIUrl":null,"url":null,"abstract":"The widespread adoption of open datasets across various domains has emphasized the significance of joining and computing their utility. However, the interplay between computation and human interaction is vital for informed decision-making. To address this issue, we first propose a utility metric to calibrate the usefulness of open datasets when joined with other such datasets. Further, we distill this utility metric through a visual analytic framework called VALUE, which empowers the researchers to identify joinable datasets, prioritize them based on their utility, and inspect the joined dataset. This transparent evaluation of the utility of the joined datasets is implemented through a human-in-the-loop approach where the researchers can adapt and refine the selection criteria according to their mental model of utility. Finally, we demonstrate the effectiveness of our approach through a usage scenario using real-world open datasets.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VALUE\",\"authors\":\"Kaustav Bhattacharjee, Aritra Dasgupta\",\"doi\":\"10.1145/3597465.3605225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread adoption of open datasets across various domains has emphasized the significance of joining and computing their utility. However, the interplay between computation and human interaction is vital for informed decision-making. To address this issue, we first propose a utility metric to calibrate the usefulness of open datasets when joined with other such datasets. Further, we distill this utility metric through a visual analytic framework called VALUE, which empowers the researchers to identify joinable datasets, prioritize them based on their utility, and inspect the joined dataset. This transparent evaluation of the utility of the joined datasets is implemented through a human-in-the-loop approach where the researchers can adapt and refine the selection criteria according to their mental model of utility. Finally, we demonstrate the effectiveness of our approach through a usage scenario using real-world open datasets.\",\"PeriodicalId\":92279,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3597465.3605225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597465.3605225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
VALUE
The widespread adoption of open datasets across various domains has emphasized the significance of joining and computing their utility. However, the interplay between computation and human interaction is vital for informed decision-making. To address this issue, we first propose a utility metric to calibrate the usefulness of open datasets when joined with other such datasets. Further, we distill this utility metric through a visual analytic framework called VALUE, which empowers the researchers to identify joinable datasets, prioritize them based on their utility, and inspect the joined dataset. This transparent evaluation of the utility of the joined datasets is implemented through a human-in-the-loop approach where the researchers can adapt and refine the selection criteria according to their mental model of utility. Finally, we demonstrate the effectiveness of our approach through a usage scenario using real-world open datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信