核反应堆反馈控制中的参数相互作用研究

Q3 Energy
V. V. Opiatiuk, I. Kozlov, V. Skalozubov, I. Ostapenko
{"title":"核反应堆反馈控制中的参数相互作用研究","authors":"V. V. Opiatiuk, I. Kozlov, V. Skalozubov, I. Ostapenko","doi":"10.21122/1029-7448-2021-64-6-517-524","DOIUrl":null,"url":null,"abstract":"This article considers the principal theoretical possibility of regulating a nuclear power reactor under changing operating modes conditions when external periodic disturbances take place in conditions of changing the operating mode. By the external periodic perturbation a downward change in the conditions of the heat sink was meant. The magnitude of the changes was preliminarily calculated in such a way that the operating conditions of the power plant did not exceed the boundaries of the safe operation zone of the reactor. In the case of approaching the operation parameters to the critical ones, the heat sink was increased until the working conditions returned to their previous state. In this work the amplitude frequency response of a non-linearly enhanced system in the nuclear power plant operating conditions when non-linearly reacting to external periodic influences has been studied. The external cyclic disturbances effect produced on the reactor that initially existed under stationary operating conditions has been considered. The research was carried out by numerical simulation of the competition between processes occurring in a nuclear power plant and determined by the system’s reaction time and relaxation time while responding to periodic external influences. Calculations of the relaxation time dependence on the fixed frequency-revealing external influence’s temperature are presented. Also, the relaxation time dependence on the frequency of external influence at a fixed temperature for systems with various relaxation periods was calculated. It is determined that when the dependence between system temperature and the external influence time is calculated, there exists a wide range of possible frequency control. To evaluate the behavior of a nuclear power reactor under conditions of operating modes changes, a fundamental physical mathematical model of the reactor’s state under external harmonic influence is presented. It is based on the nonlinear Riccati equation. The external harmonic effect was simulated by changing the heat supply and heat removal conditions near the critical point.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"476 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Parametric Interactions in the Nuclear Reactor Control with Feedback\",\"authors\":\"V. V. Opiatiuk, I. Kozlov, V. Skalozubov, I. Ostapenko\",\"doi\":\"10.21122/1029-7448-2021-64-6-517-524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article considers the principal theoretical possibility of regulating a nuclear power reactor under changing operating modes conditions when external periodic disturbances take place in conditions of changing the operating mode. By the external periodic perturbation a downward change in the conditions of the heat sink was meant. The magnitude of the changes was preliminarily calculated in such a way that the operating conditions of the power plant did not exceed the boundaries of the safe operation zone of the reactor. In the case of approaching the operation parameters to the critical ones, the heat sink was increased until the working conditions returned to their previous state. In this work the amplitude frequency response of a non-linearly enhanced system in the nuclear power plant operating conditions when non-linearly reacting to external periodic influences has been studied. The external cyclic disturbances effect produced on the reactor that initially existed under stationary operating conditions has been considered. The research was carried out by numerical simulation of the competition between processes occurring in a nuclear power plant and determined by the system’s reaction time and relaxation time while responding to periodic external influences. Calculations of the relaxation time dependence on the fixed frequency-revealing external influence’s temperature are presented. Also, the relaxation time dependence on the frequency of external influence at a fixed temperature for systems with various relaxation periods was calculated. It is determined that when the dependence between system temperature and the external influence time is calculated, there exists a wide range of possible frequency control. To evaluate the behavior of a nuclear power reactor under conditions of operating modes changes, a fundamental physical mathematical model of the reactor’s state under external harmonic influence is presented. It is based on the nonlinear Riccati equation. The external harmonic effect was simulated by changing the heat supply and heat removal conditions near the critical point.\",\"PeriodicalId\":52141,\"journal\":{\"name\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"volume\":\"476 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/1029-7448-2021-64-6-517-524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2021-64-6-517-524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了在改变运行模式条件下,当外部周期性扰动发生时,在改变运行模式条件下调节核动力反应堆的主要理论可能性。外部周期性扰动意味着散热器条件的向下变化。变化幅度的初步计算是在电站运行条件不超过反应堆安全运行区域边界的情况下进行的。在工况参数接近临界工况的情况下,加大散热,直至工况恢复到原来的状态。本文研究了核电厂运行条件下非线性增强系统在外部周期性影响下的幅频响应。考虑了反应器在初始稳定运行条件下产生的外部循环扰动效应。该研究是通过数值模拟核电站中发生的过程之间的竞争进行的,并由系统在响应周期性外部影响时的反应时间和松弛时间决定。给出了松弛时间与固定频率显示外部影响温度的关系的计算。同时,计算了具有不同弛豫周期的系统在固定温度下的弛豫时间与外界影响频率的关系。可以确定,当计算系统温度与外界影响时间的依赖关系时,存在广泛的频率控制范围。为了评估核动力反应堆在运行模式变化条件下的性能,提出了反应堆在外部谐波影响下状态的基本物理数学模型。它基于非线性Riccati方程。通过改变临界附近的供热和排热条件,模拟了外谐波效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Parametric Interactions in the Nuclear Reactor Control with Feedback
This article considers the principal theoretical possibility of regulating a nuclear power reactor under changing operating modes conditions when external periodic disturbances take place in conditions of changing the operating mode. By the external periodic perturbation a downward change in the conditions of the heat sink was meant. The magnitude of the changes was preliminarily calculated in such a way that the operating conditions of the power plant did not exceed the boundaries of the safe operation zone of the reactor. In the case of approaching the operation parameters to the critical ones, the heat sink was increased until the working conditions returned to their previous state. In this work the amplitude frequency response of a non-linearly enhanced system in the nuclear power plant operating conditions when non-linearly reacting to external periodic influences has been studied. The external cyclic disturbances effect produced on the reactor that initially existed under stationary operating conditions has been considered. The research was carried out by numerical simulation of the competition between processes occurring in a nuclear power plant and determined by the system’s reaction time and relaxation time while responding to periodic external influences. Calculations of the relaxation time dependence on the fixed frequency-revealing external influence’s temperature are presented. Also, the relaxation time dependence on the frequency of external influence at a fixed temperature for systems with various relaxation periods was calculated. It is determined that when the dependence between system temperature and the external influence time is calculated, there exists a wide range of possible frequency control. To evaluate the behavior of a nuclear power reactor under conditions of operating modes changes, a fundamental physical mathematical model of the reactor’s state under external harmonic influence is presented. It is based on the nonlinear Riccati equation. The external harmonic effect was simulated by changing the heat supply and heat removal conditions near the critical point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
32
审稿时长
8 weeks
期刊介绍: The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信