N. T. Tien, Chau Hong Nhut, V. T. B. Thuỷ, T. T. T. Huyen, Lam Thanh Hien, N. Huy
{"title":"煅烧增强商用TiO2纳米颗粒光催化效率:去除强力霉素的一个案例","authors":"N. T. Tien, Chau Hong Nhut, V. T. B. Thuỷ, T. T. T. Huyen, Lam Thanh Hien, N. Huy","doi":"10.9767/bcrec.17.3.13970.486-496","DOIUrl":null,"url":null,"abstract":"In this study, the pure and calcined forms of Degussa TiO2 were applied for photocatalytic removal of doxycycline - a broad-spectrum tetracycline antibiotic. The calcination of TiO2 at 500 °C enhanced the photocatalytic efficiency of the TiO2 under optimal operational conditions of 5 ppm of doxycycline, 0.25 g/L of TiO2, pH 6.5, 120 min, and room temperature. In addition, the changes in morphology, crystal structure, and optical properties of the materials before and after calcination were observed by scanning electron microscopy, X-ray diffraction, and UV-Visible spectroscopy. The reaction kinetics of the doxycycline removal was also investigated based on the Langmuir-Hinshelwood model with a correlation coefficient R2 of >80%. Results showed that the photocatalytic ability of TiO2 is stable and enhanced after being calcined at a suitable temperature of 500 °C. This opens up the potential application of TiO2 in the treatment of emerging organic pollutants in water. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancement in Photocatalytic Efficiency of Commercial TiO2 Nanoparticles by Calcination: A Case of Doxycycline Removal\",\"authors\":\"N. T. Tien, Chau Hong Nhut, V. T. B. Thuỷ, T. T. T. Huyen, Lam Thanh Hien, N. Huy\",\"doi\":\"10.9767/bcrec.17.3.13970.486-496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the pure and calcined forms of Degussa TiO2 were applied for photocatalytic removal of doxycycline - a broad-spectrum tetracycline antibiotic. The calcination of TiO2 at 500 °C enhanced the photocatalytic efficiency of the TiO2 under optimal operational conditions of 5 ppm of doxycycline, 0.25 g/L of TiO2, pH 6.5, 120 min, and room temperature. In addition, the changes in morphology, crystal structure, and optical properties of the materials before and after calcination were observed by scanning electron microscopy, X-ray diffraction, and UV-Visible spectroscopy. The reaction kinetics of the doxycycline removal was also investigated based on the Langmuir-Hinshelwood model with a correlation coefficient R2 of >80%. Results showed that the photocatalytic ability of TiO2 is stable and enhanced after being calcined at a suitable temperature of 500 °C. This opens up the potential application of TiO2 in the treatment of emerging organic pollutants in water. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). \",\"PeriodicalId\":9366,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.17.3.13970.486-496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.17.3.13970.486-496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Enhancement in Photocatalytic Efficiency of Commercial TiO2 Nanoparticles by Calcination: A Case of Doxycycline Removal
In this study, the pure and calcined forms of Degussa TiO2 were applied for photocatalytic removal of doxycycline - a broad-spectrum tetracycline antibiotic. The calcination of TiO2 at 500 °C enhanced the photocatalytic efficiency of the TiO2 under optimal operational conditions of 5 ppm of doxycycline, 0.25 g/L of TiO2, pH 6.5, 120 min, and room temperature. In addition, the changes in morphology, crystal structure, and optical properties of the materials before and after calcination were observed by scanning electron microscopy, X-ray diffraction, and UV-Visible spectroscopy. The reaction kinetics of the doxycycline removal was also investigated based on the Langmuir-Hinshelwood model with a correlation coefficient R2 of >80%. Results showed that the photocatalytic ability of TiO2 is stable and enhanced after being calcined at a suitable temperature of 500 °C. This opens up the potential application of TiO2 in the treatment of emerging organic pollutants in water. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).