基于策略强化学习和后优化的车道合并

Patrick Hart, Leonard Rychly, A. Knoll
{"title":"基于策略强化学习和后优化的车道合并","authors":"Patrick Hart, Leonard Rychly, A. Knoll","doi":"10.1109/ITSC.2019.8917002","DOIUrl":null,"url":null,"abstract":"Many current behavior generation methods struggle to handle real-world traffic situations as they do not scale well with complexity. However, behaviors can be learned off-line using data-driven approaches. Especially, reinforcement learning is promising as it implicitly learns how to behave utilizing collected experiences. In this work, we combine policy-based reinforcement learning with local optimization to foster and synthesize the best of the two methodologies. The policy-based reinforcement learning algorithm provides an initial solution and guiding reference for the post-optimization. Therefore, the optimizer only has to compute a single homotopy class, e.g. drive behind or in front of the other vehicle. By storing the state-history during reinforcement learning, it can be used for constraint checking and the optimizer can account for interactions. The post-optimization additionally acts as a safety-layer and the novel method, thus, can be applied in safety-critical applications. We evaluate the proposed method using lane-change scenarios with a varying number of vehicles.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"1 1","pages":"3176-3181"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Lane-Merging Using Policy-based Reinforcement Learning and Post-Optimization\",\"authors\":\"Patrick Hart, Leonard Rychly, A. Knoll\",\"doi\":\"10.1109/ITSC.2019.8917002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many current behavior generation methods struggle to handle real-world traffic situations as they do not scale well with complexity. However, behaviors can be learned off-line using data-driven approaches. Especially, reinforcement learning is promising as it implicitly learns how to behave utilizing collected experiences. In this work, we combine policy-based reinforcement learning with local optimization to foster and synthesize the best of the two methodologies. The policy-based reinforcement learning algorithm provides an initial solution and guiding reference for the post-optimization. Therefore, the optimizer only has to compute a single homotopy class, e.g. drive behind or in front of the other vehicle. By storing the state-history during reinforcement learning, it can be used for constraint checking and the optimizer can account for interactions. The post-optimization additionally acts as a safety-layer and the novel method, thus, can be applied in safety-critical applications. We evaluate the proposed method using lane-change scenarios with a varying number of vehicles.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"1 1\",\"pages\":\"3176-3181\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

许多当前的行为生成方法很难处理现实世界的流量情况,因为它们不能很好地扩展复杂性。但是,可以使用数据驱动的方法离线学习行为。特别是,强化学习是有前途的,因为它隐含地学习如何利用收集到的经验行为。在这项工作中,我们将基于策略的强化学习与局部优化相结合,以培养和综合两种方法的优点。基于策略的强化学习算法为后续优化提供了初始解和指导性参考。因此,优化器只需要计算一个同伦类,例如,在另一辆车的后面或前面行驶。通过在强化学习过程中存储状态历史,它可以用于约束检查,优化器可以解释交互。后优化还可以作为安全层,因此该方法可以应用于安全关键应用。我们使用不同车辆数量的变道场景来评估所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lane-Merging Using Policy-based Reinforcement Learning and Post-Optimization
Many current behavior generation methods struggle to handle real-world traffic situations as they do not scale well with complexity. However, behaviors can be learned off-line using data-driven approaches. Especially, reinforcement learning is promising as it implicitly learns how to behave utilizing collected experiences. In this work, we combine policy-based reinforcement learning with local optimization to foster and synthesize the best of the two methodologies. The policy-based reinforcement learning algorithm provides an initial solution and guiding reference for the post-optimization. Therefore, the optimizer only has to compute a single homotopy class, e.g. drive behind or in front of the other vehicle. By storing the state-history during reinforcement learning, it can be used for constraint checking and the optimizer can account for interactions. The post-optimization additionally acts as a safety-layer and the novel method, thus, can be applied in safety-critical applications. We evaluate the proposed method using lane-change scenarios with a varying number of vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信