{"title":"研究咖啡中赭曲霉毒素A的来源,以及采收后的处理和制造对其影响","authors":"P. Bucheli, M. Taniwaki","doi":"10.1080/02652030110113816","DOIUrl":null,"url":null,"abstract":"The major risk factors and processing steps that can lead to contamination of green coffee with ochratoxin A (OTA) have been identified. Surveys of the green coffee production chain indicate that Aspergillus ochraceus and A. carbonarius are the most potent OTA producers on coffee. Both have been successfully grown in vitro on green coffee and coffee cherries, respectively, producing high amounts of OTA (5-13 mg kg-1). The so-called dry processing of coffee, which is cherry drying, was identified as one of the steps during which OTA formation can take place, particularly under humid tropical conditions. Cherries contain sufficient amounts of water to support mould growth and OTA formation during the initial 3–5 days of drying on the outer part of the cherries. Not surprisingly, after dehulling, husks can be highly contaminated with OTA, as also indicated by its enhanced concentration in soluble coffees adulterated with husks and parchment. A minimum water activity of 0.80 (about 14% MC) is required for in vitro OTA production on green coffee, a fact that does not rule out the possibility of OTA contamination due to improper transportation and storage of green coffee. However, this appears not to be a major route for OTA contamination of coffee. OTA contamination can clearly be minimized by following good agricultural practice and a subsequent post-harvest handling consisting of appropriate techniques for drying, grading, transportation and storage of green coffee; these procedures are well established.","PeriodicalId":12310,"journal":{"name":"Food Additives & Contaminants","volume":"92 1","pages":"655 - 665"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Research on the origin, and on the impact of post-harvest handling and manufacturing on the presence of ochratoxin A in coffee\",\"authors\":\"P. Bucheli, M. Taniwaki\",\"doi\":\"10.1080/02652030110113816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The major risk factors and processing steps that can lead to contamination of green coffee with ochratoxin A (OTA) have been identified. Surveys of the green coffee production chain indicate that Aspergillus ochraceus and A. carbonarius are the most potent OTA producers on coffee. Both have been successfully grown in vitro on green coffee and coffee cherries, respectively, producing high amounts of OTA (5-13 mg kg-1). The so-called dry processing of coffee, which is cherry drying, was identified as one of the steps during which OTA formation can take place, particularly under humid tropical conditions. Cherries contain sufficient amounts of water to support mould growth and OTA formation during the initial 3–5 days of drying on the outer part of the cherries. Not surprisingly, after dehulling, husks can be highly contaminated with OTA, as also indicated by its enhanced concentration in soluble coffees adulterated with husks and parchment. A minimum water activity of 0.80 (about 14% MC) is required for in vitro OTA production on green coffee, a fact that does not rule out the possibility of OTA contamination due to improper transportation and storage of green coffee. However, this appears not to be a major route for OTA contamination of coffee. OTA contamination can clearly be minimized by following good agricultural practice and a subsequent post-harvest handling consisting of appropriate techniques for drying, grading, transportation and storage of green coffee; these procedures are well established.\",\"PeriodicalId\":12310,\"journal\":{\"name\":\"Food Additives & Contaminants\",\"volume\":\"92 1\",\"pages\":\"655 - 665\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Additives & Contaminants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02652030110113816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Additives & Contaminants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02652030110113816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on the origin, and on the impact of post-harvest handling and manufacturing on the presence of ochratoxin A in coffee
The major risk factors and processing steps that can lead to contamination of green coffee with ochratoxin A (OTA) have been identified. Surveys of the green coffee production chain indicate that Aspergillus ochraceus and A. carbonarius are the most potent OTA producers on coffee. Both have been successfully grown in vitro on green coffee and coffee cherries, respectively, producing high amounts of OTA (5-13 mg kg-1). The so-called dry processing of coffee, which is cherry drying, was identified as one of the steps during which OTA formation can take place, particularly under humid tropical conditions. Cherries contain sufficient amounts of water to support mould growth and OTA formation during the initial 3–5 days of drying on the outer part of the cherries. Not surprisingly, after dehulling, husks can be highly contaminated with OTA, as also indicated by its enhanced concentration in soluble coffees adulterated with husks and parchment. A minimum water activity of 0.80 (about 14% MC) is required for in vitro OTA production on green coffee, a fact that does not rule out the possibility of OTA contamination due to improper transportation and storage of green coffee. However, this appears not to be a major route for OTA contamination of coffee. OTA contamination can clearly be minimized by following good agricultural practice and a subsequent post-harvest handling consisting of appropriate techniques for drying, grading, transportation and storage of green coffee; these procedures are well established.