研究有限差分内含物轨迹吸引的直接李雅普诺夫方法

S.K. Zavriyev, A.G. Perevozchikov
{"title":"研究有限差分内含物轨迹吸引的直接李雅普诺夫方法","authors":"S.K. Zavriyev,&nbsp;A.G. Perevozchikov","doi":"10.1016/0041-5553(90)90003-B","DOIUrl":null,"url":null,"abstract":"<div><p>Finite-difference analogues of differential inclusions encountered in the theory of optimization and some other areas are considered. The region of attraction of the trajectories of finite-difference inclusions with respect to an arbitrary Lipschitz Lyapunov function, differentiable with respect to any direction, is investigated.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 1","pages":"Pages 15-22"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90003-B","citationCount":"4","resultStr":"{\"title\":\"The direct Lyapunov method in investigating the attraction of trajectories of finite-difference inclusions\",\"authors\":\"S.K. Zavriyev,&nbsp;A.G. Perevozchikov\",\"doi\":\"10.1016/0041-5553(90)90003-B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Finite-difference analogues of differential inclusions encountered in the theory of optimization and some other areas are considered. The region of attraction of the trajectories of finite-difference inclusions with respect to an arbitrary Lipschitz Lyapunov function, differentiable with respect to any direction, is investigated.</p></div>\",\"PeriodicalId\":101271,\"journal\":{\"name\":\"USSR Computational Mathematics and Mathematical Physics\",\"volume\":\"30 1\",\"pages\":\"Pages 15-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0041-5553(90)90003-B\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"USSR Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/004155539090003B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/004155539090003B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

考虑了优化理论和其他一些领域中遇到的微分内含物的有限差分类似物。研究了有限差分包体的轨迹对任意方向可微的Lipschitz Lyapunov函数的吸引区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The direct Lyapunov method in investigating the attraction of trajectories of finite-difference inclusions

Finite-difference analogues of differential inclusions encountered in the theory of optimization and some other areas are considered. The region of attraction of the trajectories of finite-difference inclusions with respect to an arbitrary Lipschitz Lyapunov function, differentiable with respect to any direction, is investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信