{"title":"研究有限差分内含物轨迹吸引的直接李雅普诺夫方法","authors":"S.K. Zavriyev, A.G. Perevozchikov","doi":"10.1016/0041-5553(90)90003-B","DOIUrl":null,"url":null,"abstract":"<div><p>Finite-difference analogues of differential inclusions encountered in the theory of optimization and some other areas are considered. The region of attraction of the trajectories of finite-difference inclusions with respect to an arbitrary Lipschitz Lyapunov function, differentiable with respect to any direction, is investigated.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 1","pages":"Pages 15-22"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90003-B","citationCount":"4","resultStr":"{\"title\":\"The direct Lyapunov method in investigating the attraction of trajectories of finite-difference inclusions\",\"authors\":\"S.K. Zavriyev, A.G. Perevozchikov\",\"doi\":\"10.1016/0041-5553(90)90003-B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Finite-difference analogues of differential inclusions encountered in the theory of optimization and some other areas are considered. The region of attraction of the trajectories of finite-difference inclusions with respect to an arbitrary Lipschitz Lyapunov function, differentiable with respect to any direction, is investigated.</p></div>\",\"PeriodicalId\":101271,\"journal\":{\"name\":\"USSR Computational Mathematics and Mathematical Physics\",\"volume\":\"30 1\",\"pages\":\"Pages 15-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0041-5553(90)90003-B\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"USSR Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/004155539090003B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/004155539090003B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The direct Lyapunov method in investigating the attraction of trajectories of finite-difference inclusions
Finite-difference analogues of differential inclusions encountered in the theory of optimization and some other areas are considered. The region of attraction of the trajectories of finite-difference inclusions with respect to an arbitrary Lipschitz Lyapunov function, differentiable with respect to any direction, is investigated.