CDS利率中交易对手风险的多变量跳跃扩散过程

IF 0.3 Q4 MATHEMATICS, APPLIED
S. Ramli, Jiwook Jang
{"title":"CDS利率中交易对手风险的多变量跳跃扩散过程","authors":"S. Ramli, Jiwook Jang","doi":"10.12941/JKSIAM.2015.19.023","DOIUrl":null,"url":null,"abstract":"We consider counterparty risk in CDS rates. To do so, we use a multivariate jump diffusion process for obligors’ default intensity, where jumps (i.e. magnitude of contribution of primary events to default intensities) occur simultaneously and their sizes are dependent. For these simultaneous jumps and their sizes, a homogeneous Poisson process. We apply copuladependent default intensities of multivariate Cox process to derive the joint Laplace transform that provides us with joint survival/default probability and other relevant joint probabilities. For that purpose, the piecewise deterministic Markov process (PDMP) theory developed in [7] and the martingale methodology in [6] are used. We compute survival/default probability using three copulas, which are Farlie-Gumbel-Morgenstern (FGM), Gaussian and Student-t copulas, with exponential marginal distributions. We then apply the results to calculate CDS rates assuming deterministic rate of interest and recovery rate. We also conduct sensitivity analysis for the CDS rates by changing the relevant parameters and provide their figures.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"103 1","pages":"23-45"},"PeriodicalIF":0.3000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A MULTIVARIATE JUMP DIFFUSION PROCESS FOR COUNTERPARTY RISK IN CDS RATES\",\"authors\":\"S. Ramli, Jiwook Jang\",\"doi\":\"10.12941/JKSIAM.2015.19.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider counterparty risk in CDS rates. To do so, we use a multivariate jump diffusion process for obligors’ default intensity, where jumps (i.e. magnitude of contribution of primary events to default intensities) occur simultaneously and their sizes are dependent. For these simultaneous jumps and their sizes, a homogeneous Poisson process. We apply copuladependent default intensities of multivariate Cox process to derive the joint Laplace transform that provides us with joint survival/default probability and other relevant joint probabilities. For that purpose, the piecewise deterministic Markov process (PDMP) theory developed in [7] and the martingale methodology in [6] are used. We compute survival/default probability using three copulas, which are Farlie-Gumbel-Morgenstern (FGM), Gaussian and Student-t copulas, with exponential marginal distributions. We then apply the results to calculate CDS rates assuming deterministic rate of interest and recovery rate. We also conduct sensitivity analysis for the CDS rates by changing the relevant parameters and provide their figures.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"103 1\",\"pages\":\"23-45\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2015.19.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2015.19.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑CDS利率中的交易对手风险。为此,我们对债务人的违约强度使用了多元跳跃扩散过程,其中跳跃(即主要事件对违约强度的贡献大小)同时发生,并且它们的大小是相关的。对于这些同时发生的跳跃和它们的大小,一个均匀的泊松过程。利用多元Cox过程的相互依赖的违约强度,导出了联合拉普拉斯变换,得到了联合生存/违约概率和其他相关的联合概率。为此,使用了[7]中发展的分段确定性马尔可夫过程(PDMP)理论和[6]中的鞅方法。我们使用法利-甘贝尔-摩根斯特恩(FGM),高斯和学生-t三种幂指数边际分布的copula来计算生存/违约概率。然后,我们应用结果来计算CDS利率,假设利率和回收率是确定的。我们还通过改变相关参数对CDS率进行了敏感性分析,并给出了相应的数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A MULTIVARIATE JUMP DIFFUSION PROCESS FOR COUNTERPARTY RISK IN CDS RATES
We consider counterparty risk in CDS rates. To do so, we use a multivariate jump diffusion process for obligors’ default intensity, where jumps (i.e. magnitude of contribution of primary events to default intensities) occur simultaneously and their sizes are dependent. For these simultaneous jumps and their sizes, a homogeneous Poisson process. We apply copuladependent default intensities of multivariate Cox process to derive the joint Laplace transform that provides us with joint survival/default probability and other relevant joint probabilities. For that purpose, the piecewise deterministic Markov process (PDMP) theory developed in [7] and the martingale methodology in [6] are used. We compute survival/default probability using three copulas, which are Farlie-Gumbel-Morgenstern (FGM), Gaussian and Student-t copulas, with exponential marginal distributions. We then apply the results to calculate CDS rates assuming deterministic rate of interest and recovery rate. We also conduct sensitivity analysis for the CDS rates by changing the relevant parameters and provide their figures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信