加权平方函数不等式

Pub Date : 2018-01-01 DOI:10.5565/PUBLMAT6211804
A. Osȩkowski
{"title":"加权平方函数不等式","authors":"A. Osȩkowski","doi":"10.5565/PUBLMAT6211804","DOIUrl":null,"url":null,"abstract":"For an integrable function f on [0, 1)d, let S(f) and M f denote the corresponding dyadic square function and the dyadic maximal function of f, respectively. The paper contains the proofs of the following statements. (i) If w is a dyadic A1 weight on [0, 1)d, then ||S(f)||L1(w) ≤√ 5[w] 1/2 A1 ||M f||L1(w). The exponent 1/2 is shown to be the best possible. (ii) For any p > 1, there are no constants cp, αp  epending only on p such that for all dyadic Ap weights w on [0, 1)d, ||S(f)||L1(w) ≤ cp[w] αp Ap ||M f||L1(w).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Weighted square function inequalities\",\"authors\":\"A. Osȩkowski\",\"doi\":\"10.5565/PUBLMAT6211804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an integrable function f on [0, 1)d, let S(f) and M f denote the corresponding dyadic square function and the dyadic maximal function of f, respectively. The paper contains the proofs of the following statements. (i) If w is a dyadic A1 weight on [0, 1)d, then ||S(f)||L1(w) ≤√ 5[w] 1/2 A1 ||M f||L1(w). The exponent 1/2 is shown to be the best possible. (ii) For any p > 1, there are no constants cp, αp  epending only on p such that for all dyadic Ap weights w on [0, 1)d, ||S(f)||L1(w) ≤ cp[w] αp Ap ||M f||L1(w).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/PUBLMAT6211804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6211804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

对于可积函数f在[0,1)d上,设S(f)和M f分别表示相应的并进平方函数和f的并进极大函数。本文包含下列陈述的证明。(i)如果w是[0,1)d上的二进A1权值,则||S(f)||L1(w)≤√5[w] 1/2 A1 ||M f||L1(w)。指数1/2是最好的。(ii)对于任何p > 1,不存在仅依赖于p的常数cp, αp,使得对于所有并矢Ap权值w在[0,1)d上,||S(f)| L1(w)≤cp[w] αp Ap |M f| L1(w)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Weighted square function inequalities
For an integrable function f on [0, 1)d, let S(f) and M f denote the corresponding dyadic square function and the dyadic maximal function of f, respectively. The paper contains the proofs of the following statements. (i) If w is a dyadic A1 weight on [0, 1)d, then ||S(f)||L1(w) ≤√ 5[w] 1/2 A1 ||M f||L1(w). The exponent 1/2 is shown to be the best possible. (ii) For any p > 1, there are no constants cp, αp  epending only on p such that for all dyadic Ap weights w on [0, 1)d, ||S(f)||L1(w) ≤ cp[w] αp Ap ||M f||L1(w).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信