K. Koneripalli, Suhas Lohit, Rushil Anirudh, P. Turaga
{"title":"时间序列的率不变自编码","authors":"K. Koneripalli, Suhas Lohit, Rushil Anirudh, P. Turaga","doi":"10.1109/ICASSP40776.2020.9053983","DOIUrl":null,"url":null,"abstract":"For time-series classification and retrieval applications, an important requirement is to develop representations/metrics that are robust to re-parametrization of the time-axis. Temporal re-parametrization as a model can account for variability in the underlying generative process, sampling rate variations, or plain temporal mis-alignment. In this paper, we extend prior work in disentangling latent spaces of autoencoding models, to design a novel architecture to learn rate-invariant latent codes in a completely unsupervised fashion. Unlike conventional neural network architectures, this method allows to explicitly disentangle temporal parameters in the form of order-preserving diffeomorphisms with respect to a learnable template. This makes the latent space more easily interpretable. We show the efficacy of our approach on a synthetic dataset and a real dataset for hand action-recognition.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"7 1","pages":"3732-3736"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Rate-Invariant Autoencoding of Time-Series\",\"authors\":\"K. Koneripalli, Suhas Lohit, Rushil Anirudh, P. Turaga\",\"doi\":\"10.1109/ICASSP40776.2020.9053983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For time-series classification and retrieval applications, an important requirement is to develop representations/metrics that are robust to re-parametrization of the time-axis. Temporal re-parametrization as a model can account for variability in the underlying generative process, sampling rate variations, or plain temporal mis-alignment. In this paper, we extend prior work in disentangling latent spaces of autoencoding models, to design a novel architecture to learn rate-invariant latent codes in a completely unsupervised fashion. Unlike conventional neural network architectures, this method allows to explicitly disentangle temporal parameters in the form of order-preserving diffeomorphisms with respect to a learnable template. This makes the latent space more easily interpretable. We show the efficacy of our approach on a synthetic dataset and a real dataset for hand action-recognition.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"7 1\",\"pages\":\"3732-3736\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For time-series classification and retrieval applications, an important requirement is to develop representations/metrics that are robust to re-parametrization of the time-axis. Temporal re-parametrization as a model can account for variability in the underlying generative process, sampling rate variations, or plain temporal mis-alignment. In this paper, we extend prior work in disentangling latent spaces of autoencoding models, to design a novel architecture to learn rate-invariant latent codes in a completely unsupervised fashion. Unlike conventional neural network architectures, this method allows to explicitly disentangle temporal parameters in the form of order-preserving diffeomorphisms with respect to a learnable template. This makes the latent space more easily interpretable. We show the efficacy of our approach on a synthetic dataset and a real dataset for hand action-recognition.