活性炭包埋纳米双金属催化剂对非均相臭氧氧化法去除污染物的研究

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Hariprasad Pokkiladathu, Salman Farissi, A. Muthukumar, Muthukumar Muthuchamy
{"title":"活性炭包埋纳米双金属催化剂对非均相臭氧氧化法去除污染物的研究","authors":"Hariprasad Pokkiladathu, Salman Farissi, A. Muthukumar, Muthukumar Muthuchamy","doi":"10.1080/01919512.2022.2114419","DOIUrl":null,"url":null,"abstract":"ABSTRACT Organic contaminants such as Bisphenol A are classified as Contaminants of Emerging Concern (CECs). The inability of conventional water and wastewater treatments to remove CECs has made Advanced Oxidation Processes (AOPs) attractive for their removal from water sources. Oxidation species such as hydroxyl radicals are produced by AOPs that degrades and mineralize CECs found in water and wastewater. The present study focuses on using heterogeneous nano-metallic oxide embedded activated carbon (AC) for degrading Bisphenol-A (BPA) present in the water. The catalytic ozonation process was carried out using AC/Cu2O/ZnO as the catalyst. The bimetallic catalyst was characterized using BET, XRD, FESEM, Raman Spectra, and DLS. Total organic carbon (TOC) removal was 19% higher for catalytic ozonation when compared with non-catalytic ozonation. HPLC studies found that BPA was removed by 98%. The optimal conditions for degradation were 650 µg/L, pH 8 and 60 minutes. LC-MS/LC-Q-TOF was utilized to find the degradation pathway.","PeriodicalId":19580,"journal":{"name":"Ozone: Science & Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Removal of a Contaminant of Emerging Concern by Heterogeneous Catalytic Ozonation Process with a Novel Nano Bimetallic Catalyst Embedded on Activated Carbon\",\"authors\":\"Hariprasad Pokkiladathu, Salman Farissi, A. Muthukumar, Muthukumar Muthuchamy\",\"doi\":\"10.1080/01919512.2022.2114419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Organic contaminants such as Bisphenol A are classified as Contaminants of Emerging Concern (CECs). The inability of conventional water and wastewater treatments to remove CECs has made Advanced Oxidation Processes (AOPs) attractive for their removal from water sources. Oxidation species such as hydroxyl radicals are produced by AOPs that degrades and mineralize CECs found in water and wastewater. The present study focuses on using heterogeneous nano-metallic oxide embedded activated carbon (AC) for degrading Bisphenol-A (BPA) present in the water. The catalytic ozonation process was carried out using AC/Cu2O/ZnO as the catalyst. The bimetallic catalyst was characterized using BET, XRD, FESEM, Raman Spectra, and DLS. Total organic carbon (TOC) removal was 19% higher for catalytic ozonation when compared with non-catalytic ozonation. HPLC studies found that BPA was removed by 98%. The optimal conditions for degradation were 650 µg/L, pH 8 and 60 minutes. LC-MS/LC-Q-TOF was utilized to find the degradation pathway.\",\"PeriodicalId\":19580,\"journal\":{\"name\":\"Ozone: Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ozone: Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/01919512.2022.2114419\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ozone: Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01919512.2022.2114419","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 2

摘要

双酚A等有机污染物被列为新兴关注污染物(CECs)。传统的水和废水处理方法无法去除CECs,这使得高级氧化工艺(AOPs)成为从水源中去除CECs的热门技术。氧化物质如羟基自由基是由AOPs产生的,AOPs可以降解和矿化水和废水中的CECs。本文研究了非均相纳米金属氧化物包埋活性炭(AC)对水中双酚a (BPA)的降解作用。以AC/Cu2O/ZnO为催化剂,进行了催化臭氧化反应。采用BET、XRD、FESEM、拉曼光谱和DLS对催化剂进行了表征。与非催化臭氧化相比,催化臭氧化的总有机碳(TOC)去除率高19%。HPLC研究发现BPA被去除了98%。最佳降解条件为650µg/L, pH为8,60 min。采用LC-MS/LC-Q-TOF法寻找降解途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Removal of a Contaminant of Emerging Concern by Heterogeneous Catalytic Ozonation Process with a Novel Nano Bimetallic Catalyst Embedded on Activated Carbon
ABSTRACT Organic contaminants such as Bisphenol A are classified as Contaminants of Emerging Concern (CECs). The inability of conventional water and wastewater treatments to remove CECs has made Advanced Oxidation Processes (AOPs) attractive for their removal from water sources. Oxidation species such as hydroxyl radicals are produced by AOPs that degrades and mineralize CECs found in water and wastewater. The present study focuses on using heterogeneous nano-metallic oxide embedded activated carbon (AC) for degrading Bisphenol-A (BPA) present in the water. The catalytic ozonation process was carried out using AC/Cu2O/ZnO as the catalyst. The bimetallic catalyst was characterized using BET, XRD, FESEM, Raman Spectra, and DLS. Total organic carbon (TOC) removal was 19% higher for catalytic ozonation when compared with non-catalytic ozonation. HPLC studies found that BPA was removed by 98%. The optimal conditions for degradation were 650 µg/L, pH 8 and 60 minutes. LC-MS/LC-Q-TOF was utilized to find the degradation pathway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ozone: Science & Engineering
Ozone: Science & Engineering 环境科学-工程:环境
CiteScore
5.90
自引率
11.10%
发文量
40
审稿时长
2 months
期刊介绍: The only journal in the world that focuses on the technologies of ozone and related oxidation technologies, Ozone: Science and Engineering brings you quality original research, review papers, research notes, and case histories in each issue. Get the most up-to date results of basic, applied, and engineered research including: -Ozone generation and contacting- Treatment of drinking water- Analysis of ozone in gases and liquids- Treatment of wastewater and hazardous waste- Advanced oxidation processes- Treatment of emerging contaminants- Agri-Food applications- Process control of ozone systems- New applications for ozone (e.g. laundry applications, semiconductor applications)- Chemical synthesis. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信